
When a Knowledge Base Is Not Enough: Question
Answering over Knowledge Bases with External Text Data

Denis Savenkov
Emory University

dsavenk@emory.edu

Eugene Agichtein
Emory University

eugene@mathcs.emory.edu

ABSTRACT
One of the major challenges for automated question answer-
ing over Knowledge Bases (KBQA) is translating a natural
language question to the Knowledge Base (KB) entities and
predicates. Previous systems have used a limited amount of
training data to learn a lexicon that is later used for question
answering. This approach does not make use of other poten-
tially relevant text data, outside the KB, which could supple-
ment the available information. We introduce a new system,
Text2KB, that enriches question answering over a knowledge
base by using external text data. Specifically, we revisit dif-
ferent phases in the KBQA process and demonstrate that
text resources improve question interpretation, candidate
generation and ranking. Building on a state-of-the-art tra-
ditional KBQA system, Text2KB utilizes web search results,
community question answering and general text document
collection data, to detect question topic entities, map ques-
tion phrases to KB predicates, and to enrich the features of
the candidates derived from the KB. Text2KB significantly
improves performance over the baseline KBQA method, as
measured on a popular WebQuestions dataset. The results
and insights developed in this work can guide future efforts
on combining textual and structured KB data for question
answering.

1. INTRODUCTION
It has long been recognized that searchers prefer concise

and specific answers, rather than lists of document results.
In particular, factoid questions have been an active focus of
research for decades due to both practical importance and
relatively objective evaluation criteria. As an important ex-
ample, a large proportion of Web search queries are looking
for entities or their attributes [19], a setting on which we
focus in this work.

Two relatively separate approaches for Question Answer-
ing (QA) have emerged: text-centric, or Text-QA and knowl-
edge base-centric, or KBQA. In the more traditional, Text-
QA approach, systems use text document collections to re-
trieve passages relevant to a question and extract candidate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17-21, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2911536

answers [14]. Unfortunately, a passage of text provides a
limited amount of information about the mentioned enti-
ties, which has to be inferred from the context. The KBQA
approach, which evolved from the database community, re-
lies on large scale knowledge bases, such as DBpedia [1],
Freebase [9], WikiData [24] and others, which store a vast
amount of general knowledge about different kinds of enti-
ties. This information, encoded as [subject, predicate,

object] RDF triples, can be effectively queried using struc-
tured query languages, such as SPARQL.

Both approaches eventually deal with natural language
questions, in which information needs are expressed by the
users. While question understanding is difficult in itself, this
setting is particularly challenging for KBQA systems, as it
requires a translation of a text question into a structured
query language, which is complicated because of the com-
plexity of a KB schema, and many differences between nat-
ural language and knowledge representations. For example,
Figure 1 shows a SPARQL query that retrieves the answer
to a relatively simple question “who was the president of the
Dominican Republic in 2010?” from Freebase.

KBQA systems must address three challenges, namely
question entity identification (to anchor the query process);
candidate answer generation; and candidate ranking. We
will show that these challenges can be alleviated by the ap-
propriate use of external textual data. Entity identification
seeds the answer search process, and therefore the perfor-
mance of the whole system greatly depends on this stage
[28]. Question text is often quite short, may contain typos
and other problems, that complicate entity linking. Exist-
ing approaches are usually based on dictionaries that contain
entity names, aliases and some other phrases, used to refer
to the entities [21]. These dictionaries are noisy and incom-
plete, e.g., to answer the question “what year did tut became
king?” a system needs to detect a mention“tut”, which refers
to the entity Tutankhamun. If a dictionary doesn’t contain
a mapping “tut”→ Tutankhamun, as happens for one of the
state of the art systems, it will not be able to answer the
question correctly. Such less popular name variations are
often used along with full names inside text documents, for
example, to avoid repetitions. Therefore, we propose to look
into web search results to find variations of question entity
names, which can be easier to link to a KB (Figure 2). This
idea has been shown effective in entity linking for web search
queries1 [12].

After question entities have been identified, answer candi-
dates need to be generated and ranked to select the best an-
swer. A candidate query includes one or multiple triple pat-

1http://web-ngram.research.microsoft.com/ERD2014/

SELECT DISTINCT ?name {
:m.027 rn : government . g ov e rnmen t a l j u r i s d i c t i on . g o v e r n i n g o f f i c i a l s ? gov po s i t i on .
? gov po s i t i on : government . government pos i t i on he ld . b a s i c t i t l e :m.060 c4 .
? gov po s i t i on : government . government pos i t i on he ld . o f f i c e h o l d e r ? p r e s i d en t .
? gov po s i t i on : government . government pos i t i on he ld . from ? from date .
? gov po s i t i on : government . government pos i t i on he ld . to ? to date .
FILTER (xsd : date (? from date) <= ”2010”ˆˆ xsd : date AND xsd : date (? to date) >= ”2010”ˆˆ xsd : date)
? p r e s i d en t : type . ob j e c t . name ?name

}

Figure 1: SPARQL query to retrieve the answer to the question “who was the president of the dominican
republic in 2010?” from Freebase

Figure 2: Search results for the question “what year
did tut became king?”, which mention both the full
name of the king and the correct answer to the ques-
tion

terns with predicates, corresponding to words and phrases
in the question. Existing knowledge base question answer-
ing approaches [3, 6, 7, 8, 10, 29] rely on a lexicon, learned
from manually labeled training data, and supported by addi-
tional resources, such as question paraphrases [7] and weakly
labeled sentences from a large text collection [30]. Such
training data tends to be small compared to the number
of different predicates in a KB, and therefore the coverage
of these lexicons is limited. By our estimate, in a popular
WebQuestions KBQA dataset, the answers to ∼5.5% of test
questions (112 out of 2032) involve a predicate that does not
appear as a ground truth in the training set. For example,
an RDF triple [Bigos, food.dish.type_of_dish1, Stew]

answers the question “what are bigos?”, but no other exam-
ples in the training set involve this predicate. In addition,
a lexicon needs to cover all different ways a predicate can
be asked about. For example, questions “who did jon gos-
selin cheat with?” and “who is the woman that john edwards
had an affair with?” are answered by the same KB predi-
cate, but use different language. Therefore, presence of the
first question in a training set may not help to answer the
second question. On the other hand, traditional Text-QA
systems benefit from the redundancy of the information on
the Web, where the same facts are stated multiple times in
many different ways [17]. This increases the chances of a
good lexical match between a question and answer state-
ments, which makes even some relatively simple counting-
based techniques quite effective [11]. We propose to adapt
these ideas from text-based question answering for KBQA.
The right part of the Figure 3 shows web search results,
a community question answering page, and text fragments
mentioning pairs of entities, that can be useful to answer the

question about John Edwards’ affair.
To summarize, our contributions are three-fold:

• A novel “hybrid” knowledge base question answering
system, which uses both structured data from a knowl-
edge base and unstructured text resources. Section 3
describes the architecture of our system, and Section
4 shows that this fusion improves the performance of
a state of the art KBQA system.

• Novel data sources and techniques for KBQA: enhanc-
ing question entity identification using web search re-
sults (Section 3.1); improving predicate matching by
mining CQA data (Section 3.2); and improving can-
didate ranking by incorporating text corpus statistics
(Section 3.3).

• Comprehensive empirical analysis of our system on
a popular WebQuestions benchmark, demonstrating
that additional text resources can improve the per-
formance of a state-of-the-art KBQA system (Section
4). In addition, we conduct an extensive analysis of
the system to identify promising directions for future
improvements (Section 5).

Taken together, this work introduces novel techniques for
using external text to significantly improve the performance
of the KBQA approach. More broadly, our work bridges the
gap between Text-QA and KBQA worlds, demonstrating an
important step forward towards combining unstructured and
structured data for question answering.

2. OVERVIEW OF KNOWLEDGE BASE
QUESTION ANSWERING

In this section, we overview the existing approaches to
Knowledge Base Question Answering (KBQA), as our ap-
proach, described in the next section, builds upon and ex-
tends some of these efforts.

Over time, KBQA systems have converged to two major
approaches: semantic parsing, and information extraction
(IE) [29]. The former focuses on question understanding,
and attempts to parse sentences into their semantic repre-
sentations, e.g., logical forms [6, 7, 8]. IE approaches [3,
31, 30] are based on identifying topic entities in the ques-
tion, and then, using pre-defined templates for mapping the
question to predicates, explore the neighborhood of these
entities in a KB. Theoretically, semantic parsing-based sys-
tems would be capable of generating any required queries,
and would apply to any question, seen or unseen in training,
whereas the template-based approach is less likely to gener-
alize. In practice, however, answers to most of the questions
lie within two edge traversals in a KB, making the template-
based approaches quite effective.

Recent resurgence of interest in KBQA coincides with the
availability of large scale knowledge bases such as Freebase
and DBPedia, as well as commercial efforts from Google,
Microsoft, Facebook and Yahoo; which make it possible to
answer many real questions. Additionally, the creation of
the WebQuestions dataset [6], provided a common bench-
mark which is large enough to allow both comprehensive
evaluation, and training machine learning methods. In this
work, we chose to extend an existing information extraction
KBQA system – Aqqu [3] – which achieves one of the high-
est scores among publicly available systems. However, as we
will show, our approach is general and can be incorporated
into other IE-based systems as well.

We will first describe an information extraction approach
to KBQA in more detail using Aqqu as an example. In
Section 3 we present our system Text2KB, which extends
this approach by incorporating external text-based data at
various stages of the question answering process.

2.1 The Aqqu KBQA system
First, the system identifies question entities, which are

used as sources for the answer search process. For concrete-
ness, consider a question from the WebQuestions dataset
“who is the woman that john edwards had an affair with?”.
Here, the entity John Edwards with Freebase id /m/01651q

is the main question entity. However, Freebase contains mil-
lions of entities and it can be difficult to identify the topical
ones (e.g., entities Woman and Affair are also present in
Freebase), or to disambiguate and choose between John Ed-

wards a politician (/m/01641q), an American racing driver
(/m/06zs089) and other people with the same name. Aqqu
considers all spans of question words under certain condi-
tions on part of speech tags and uses an entity names lexicon
[21] to map phrases to potential entities. Most reported sys-
tems, including Aqqu, do not disambiguate entities at this
stage, but rather keep a set of candidates along with some in-
formation about their popularities (e.g., number of mentions
in the collection), and mention scores p(entity|mention text).

At the next stage, SPARQL query candidates are gener-
ated by exploring the neighborhood of the question topic
entities using a predefined set of query templates. Each
query template has question entities, predicates and answer
placeholders. The majority of the answers in the WebQues-
tions dataset can be covered by just 3 templates (q entity
- question entity, a entity - answer entity, cvt node - Free-
base mediator node, which represent tuples with more than
2 arguments):

SELECT DISTINCT ? a en t i t y {
<q ent i ty> <pred i cate> ? a en t i t y .

}

SELECT DISTINCT ? a en t i t y {
<q ent i ty> <pred i ca t e 1> ? cvt node .
? cvt node <pred i ca t e 2> ? a en t i t y .

}

SELECT DISTINCT ? a en t i t y {
<q ent i ty 1> <pred i ca t e 1> ? cvt node .
? cvt node <pred i ca t e 2> <q ent i ty 2> .
? cvt node <pred i ca t e 3> ? a en t i t y .

}

The first template retrieves a set of entities that are di-
rectly connected to the given question entity via a certain
predicate. The second template accounts for the presence of

a mediator node, that groups together arguments of a multi-
argument relation. And the last template looks for cases,
when a question also mentions another argument of a multi-
argument relation, e.g., Captain Kirk and Star Trek for
the question “who played captain kirk in star trek movie?”.

Each query candidate is represented with a set of fea-
tures, that includes the scores for linked question entities,
various scores for matching between question term n-grams
and query predicates, the size of the results list, etc. The
final stage of the question answering process is filtering and
ranking. The Aqqu system employs a pairwise learning-to-
rank model, trained on part of the dataset. For each pair
of candidate answers Aqqu creates an instance, which con-
tains 3 groups of features: features of the first, the second
candidate in the pair and the differences between the corre-
sponding features of the candidates. Specifically, a Random
Forest model is used in the provided Aqqu implementation.
A pair where the first candidate is better than the second
belongs to class +1, and -1 otherwise. To reduce the num-
ber of pairs for the final ranking, Aqqu includes a simplified
linear filtering model, which is trained to detect incorrect
answers with high precision.

2.2 Basic system extensions
Before introducing our text-based improvements, we de-

scribe some basic extensions to the original Aqqu system.
First, we noticed that since Aqqu does not use information
about the answer entity Freebase types, in many cases it re-
turns an answer that is incompatible with the question: e.g.,
state instead of county etc. Therefore, we trained a model
to return a score which measures compatibility between the
question and answer entities, based on the entity notable
types and question uni- and bi-grams as features, similar
to Aqqu’s relations score model. A second extension intro-
duced a new date range query template, which helps solve
cases like “what team did david beckham play for in 2011?”,
where we need to look at the ranges of dates to determine
whether an answer candidate satisfies the question.

SELECT DISTINCT ? a en t i t y {
<q ent i ty 1> <pred i ca t e 1> ? cvt node .
? cvt node <f rom pred icate> ? date from .
? cvt node <t o p r ed i c a t e> ? date to .
? cvt node <pred i ca t e 2> ? a en t i t y .
FILTER (<ques t ion date> >= ?date from AND

<ques t ion date> <= ? date to)
}

3. TEXT2KB: INCORPORATING TEXT
DATA INTO KBQA

We now introduce our system, called Text2KB2, that ex-
pands upon the basic KBQA model by incorporating exter-
nal textual sources throughout the QA process. The gen-
eral architecture and an example use case of Text2KB is
presented on Figure 3. The left part of the figure roughly
corresponds to the architecture of existing information ex-
traction approaches to KBQA. The right part introduces
additional external text data sources, namely Web search
results, community question answering (CQA) data, and a
collection of documents with detected KB entity mentions.
We demonstrate how these data sources can help with the
main challenges in KBQA, i.e., question topical entity iden-
tification, predicate scoring and answer candidates ranking.

2http://ir.mathcs.emory.edu/projects/text2kb/

Figure 3: The architecture of our Text2KB Question Answering system

As described in detail next, this information is used to de-
velop novel features for detecting entities and ranking candi-
date answers. The final ranking is performed using the same
learning-to-rank method as the baseline Aqqu system [3],
which uses the Random Forest model.

3.1 Web search results for KBQA
Traditional Text-QA systems rely on search results to re-

trieve relevant documents, which are then used to extract
answers to users’ questions. Relevant search results men-
tion question entities multiple times and in various forms,
which can be helpful for entity linking [12]. Furthermore,
retrieved document set often contains multiple statements
of the answer, which can be a strong signal for candidate
ranking [17].

To obtain related web search results, Text2KB issues the
question as a query to a search engine3, extracts top 10 result
snippets and the corresponding documents. Next, Text2KB
uses Aqqu entity linking module to detect KB entity men-
tions in both snippets and documents.

Question entity identification. Question text provides
only a limited context for entity disambiguation and linking;
additionally, the entity name can be misspelled or an uncom-
mon variation used. This complicates the task of entity iden-

3In our experiments we use the Bing Web Search API
https://datamarket.azure.com/dataset/bing/search and lo-
cal Wikipedia search using Lucene

tification, which is the foundation of KB question answer-
ing process. Fortunately, web search results help with these
problems, as they usually contain multiple mentions of the
same entities and provide more context for disambiguation.
Text2KB uses the search result snippets to expand the set
of detected question entities. More specifically, we count the
frequencies of each entity mentioned in search snippets, and
most popular ones with names similar to some of the ques-
tion terms are added to the list of topical entities. The goal
of this similarity condition is to keep only entities that are
likely mentioned in the question text, and filter out related,
but different entities. To estimate the similarity between a
name and question tokens, we use Jaro-Winkler string dis-
tance. An entity is added to the list of question entities if
at least one of its tokens et has high similarity with one of
the question tokens qt excluding stopwords (Stop):

max
et∈M\Stop,qt∈Q\Stop

1− dist(et, qt) ≥ 0.8

Answer candidate features. The information stored in
KBs can also be present in other formats, e.g., text state-
ments. For example, on Figure 2 multiple search snippets
mention the date when Tutankhamun became a king. Text-
QA systems use such passages to extract answer to users’
questions. However, text may not provide sufficient context
information about the mentioned entities, and systems have
to infer the useful details, e.g., entity types, which can be
problematic [31]. On the other hand, KBQA systems can

Figure 4: Example of a question and answer pair
from Yahoo! Answers CQA website

utilize all the available KB knowledge about the entities in
a candidate answer, and would benefit from additional text-
based information to improve ranking. More specifically,
Text2KB proceeds as follows:

1. Precompute term and entity IDFs. We used Google
n-grams corpus to approximate terms IDF by collec-
tion frequencies and available ClueWeb Freebase entity
annotations4 to compute entity IDF scores.

2. Each snippet si and document di are represented by
two TF-IDF vectors of lowercased tokens (tsi and tdi)
and mentioned entities (esi and edi).

3. In addition, vectors of all snippets and all documents
are merged together to form combined token and entity
vectors: t∪si , t∪di , e∪si and e∪di .

4. Each answer candidate aj is also represented as TF-
IDF vector of terms (from entity names), and entities:
taj and eaj

5. Cosine similarities between answer and each of 10 snip-
pet and document vectors are computed: cos(tsi , taj),
cos(tdi , taj) and cos(esi , eaj), cos(edi , eaj). We use the
average score and the maximum score as features.

6. We also compute answer similarities with the com-
bined snippet and document vectors: cos(t∪si , taj),
cos(e∪si , eaj), cos(t∪di , taj), cos(e∪di , eaj).

3.2 CQA data for Matching Questions to Pred-
icates

Recall that a major challenge in KBQA is that natural
language questions do not easily map to entities and predi-
cates in a KB. An established approach for this task is su-
pervised machine learning, which requires labeled examples
of questions and the corresponding answers to learn this
mapping, which can be expensive to construct. Researchers
have proposed to use weakly supervised methods to extend
a lexicon with mappings learned from single sentence state-
ments mentioning entity pairs in a large corpus [30]. How-
ever, the language used in questions to query about a certain
predicate may differ from the language used in statements.
A recent work [20] demonstrated how distant supervision
can be applied to question-answer pairs from CQA archives
for a related task of information extraction for knowledge
base completion. In a similar way, we use weakly labeled
collection of question-answer pairs to compute associations
between question terms and predicates to extend system’s
lexicon (Figure 4). We emphasize that this data does not re-
place the mappings learned from single sentence statements,
which are already used by our baseline system, but rather
introduces the new ones learned from the CQA data.

For our experiments we use 4.4M questions from Yahoo!

4http://lemurproject.org/clueweb09/FACC1/

Term Predicate PMI
score

born people.person.date of birth 3.67
people.person.date of death 2.73
location.location.people born here 1.60

kill people.deceased person.cause of death 1.70
book.book.characters 1.55

currency location.country.currency formerly used 5.55
location.country.currency used 3.54

school education.school.school district 4.14
people.education.institution 1.70
sports.school sports team.school 1.69

win sports.sports team.championships 4.11
sports.sports league.championship 3.79

Table 1: Examples of term-predicate pairs with
high PMI scores, computed using distant supervi-
sion from a CQA collection

WebScope L6 dataset5. Question and answer texts were run
through an entity linker, that detected mentions of Freebase
entities. Next, we use distant supervision assumption to
label each question-answer pair with predicates between en-
tities mentioned in the question and in the answer. This
labels are used to learn associations between question terms
and predicates by computing pointwise mutual information
scores (PMI) for each term-predicate pair. Examples of
scores for some terms are given in Table 1.

In Text2KB we evaluate candidate answer predicates by
using the association (e.g., PMI) scores between predicates
and the question terms (missing pairs are given a score of
0). The minimum, average and maximum of these values are
used as features to represent a candidate answer. Such asso-
ciations data can be sparse, we also use pretrained word2vec
word embeddings6. We compute predicate embeddings by
taking a weighted average of term vectors from predicate’s
PMI table. Each term vector is weighted by its PMI value
(terms with negative score are skipped). Then, we com-
pute cosine similarities between predicate vector and each
of the question term vectors and take their minimum, aver-
age, maximum as features. Finally, we average embeddings
of question terms and compute its cosine similarity with the
predicate vector.

3.3 Estimating Entity Associations
A key step for ranking candidate answers is to estimate

whether the question and answer entities are related in a
way asked in the question. Existing KBQA approaches usu-
ally focus on scoring the mappings between question phrases
and KB concepts from a candidate SPARQL query. How-
ever, textual data can provide another angle on the problem,
as question and answer entities are likely to be mentioned
together somewhere in text passages. For example, in the
bottom right corner of Figure 3 we can see some passages
that mention a pair of people, and the context of these men-
tions explains the nature of the relationships. This data can
be viewed as additional edges in a KB, which connect pairs
of entities, and have associated language models, estimated
from text phrases, that mention these entities. Such edges
do not have to coincide with the existing KB edges, and
can connect arbitrary pairs of entities, that are mentioned
together in text, therefore extending the KB.

5https://webscope.sandbox.yahoo.com/
6https://code.google.com/p/word2vec/

Entity 1 Entity 2 Term counts
John
Edwards

Rielle
Hunter

campaign, affair, mistress,
child, former ...

John
Edwards

Cate
Edwards

daughter, former, senator,
courthouse, greensboro, eldest
...

John
Edwards

Elizabeth
Edwards

wife, hunter, campaign, affair,
cancer, rielle, husband ...

John
Edwards

Frances
Quinn

daughter, john, rielle, father,
child, former, paternity...

Table 2: Example of entity pairs along with the most
popular terms mentioned around the entities

We use the ClueWeb12 corpus with existing Freebase en-
tity annotations and count different terms that occur in the
context of a mention of a pair of different entities (we only
consider mentions within 200 characters of each other). To
compute this unigram language model we use the terms sep-
arating the entities, as well as the terms within a small win-
dow (e.g., 100 characters) before and after the entity men-
tions. A small sample of this data is presented in Table
2.

We use this data to compute candidate ranking features
as follows. Consider question words Q and an answer can-
didate, which contains a question entity e1 and one or more
answer entities e2. For each answer candidate, we compute
a language model score:

p(Q|e1, e2) =
∏
t∈Q

p(t|e1, e2)

and use the minimum, average and maximum over all an-
swer entities as features. To address the sparsity problem,
we again use embeddings, i.e., for each entity pair a weighted
(by counts) average embedding vector of terms is computed
and minimum, average and maximum cosine similarities be-
tween these vectors and question token embeddings are used
as features.

3.4 Internal text data to enrich entity repre-
sentation

In addition to external text data, many knowledge bases,
including Freebase, contain text data as well, e.g., Freebase
includes a description paragraph from Wikipedia for many
of its entities. These text fragments provide a general de-
scription of entities, which may include information relevant
to the question [22]. For completeness, we include them in
our system as well. Each entity description is represented by
a vector of tokens, and a vector of mentioned entities. We
compute cosine similarities between token and entity vectors
of the question and description of each of the answers, and
use the minimum, average and maximum of the scores as
features.

4. EXPERIMENTAL RESULTS
This section reports the experimental setup, including the

dataset and metrics, as well as the main methods compared
for evaluating the performance of our Text2KB system. Ad-
ditionally, we describe a series of ablation studies to analyze
contribution of different system components.

4.1 Methods Compared
We compare our system, Text2KB, to state-of-the-art ap-

proaches, notably:

• Aqqu: the state-of-the-art baseline KBQA system [3],
described in Section 2.
• Text2KB(Web search): Our Text2KB system, us-

ing the Bing search engine API over the Web.
• Text2KB(Wikipedia search): Our Text2KB sys-

tem, using the standard Lucene search engine over
the February 2016 snapshot of the English Wikipedia,
in order to validate our system without the poten-
tial “black-box” effects of relying on a commercial Web
search engine (Bing) and changing corpus (Web).
• STAGG: The current highest performing KBQA sys-

tem [31] as measured on the WebQuestions dataset.
Additionally, other previously published results on WebQues-
tions are included to provide context for the improvements
introduced by our Text2KB system.

4.2 Datasets
We followed the standard evaluation procedure for the

WebQuestions dataset, and used the original 70-30% train-
test split (3,778 training and 2,032 test instances). Within
the training split, 10% was set aside for validation to tune
the model parameters and only the best-performing set of
parameters selected on the validation data was used to re-
port the results on the official test split.

4.3 Evaluation Metrics
Recent papers using the WebQuestions dataset have pri-

marily used the average F1-score as the main evaluation
metric, defined as: avg F1 = 1

|Q|
∑

q∈Q f1(a∗q , aq)

f1(a∗q , aq) = 2
precision(a∗q , aq)recall(a∗q , aq)

precision(a∗q , aq) + recall(a∗q , aq)

precision(a∗q , aq) =
|a∗

q∩aq|
|aq| and recall(a∗q , aq) =

|a∗
q∩aq|
|a∗

q |
, a∗q

and aq are correct and given answers to the question q, which
can be lists of entities. Additionally, we report average preci-
sion and recall, to gain better understanding of the tradeoffs
achieved by different methods.

4.4 Main Results
The results of existing approaches and our Text2KB sys-

tem are presented in Table 4. We should note, that text-
based QA systems typically return a ranked list of answers,
whereas many answers on WebQuestions dataset are lists,
which complicates the comparison between KBQA and text-
based systems. The result reported for YodaQA system is
F1 score at position 1.

As we can see, Text2KB significantly improves over the
baseline system and reaches the current best published result
- STAGG [31]. We believe that this system will also benefit
from the ideas of our work (Section 5).

4.5 Datasource and Features Contribution
To analyze the contribution of the features and datasources

we introduced, we report results from a series of ablation
studies. For convenience, we introduce the following short-
hand notations for different components of our system:

• T - notable type score model as a ranking feature
• DF - date range filter-based query template
• WebEnt - using web search result snippets for question

entity identification
• WikiEnt - using wikipedia search result snippets for

question entity identification
• Web - using web search results for feature generation

System avg Recall avg Precision F1 of avg P and R avg F1
OpenQA [16] - - - 0.35
YodaQA [4] - - - 0.343
Jacana [30] 0.458 0.517 0.486 0.330
SemPre [6] 0.413 0.480 0.444 0.357
Subgraph Embeddings [10] - - 0.432 0.392
ParaSemPre [7] 0.466 0.405 0.433 0.399
Kitt AI [28] 0.545 0.526 0.535 0.443
AgendaIL [8] 0.557 0.505 0.530 0.497
STAGG [31] 0.607 0.528 0.565 0.525
Aqqu (baseline) [3] 0.604 0.498 0.546 0.494
Text2KB (Wikipedia search) 0.632∗ (+4.6%) 0.498 0.557∗ (+2.0%) 0.514∗ (+4.0%)
Text2KB (Web search) 0.635∗ (+5.1%) 0.506∗ (+1.6%) 0.563∗ (+3.1%) 0.522∗ (+5.7%)

Table 3: Performance of the Text2KB system on WebQuestions dataset compared to the existing approaches.
The differences of scores marked * from the baseline Aqqu system are significant with p-value < 0.01

• Wiki - using wikipedia search results for feature gen-
eration
• CQA - using CQA-based [question term, KB predi-

cate] PMI scores for feature generation
• CW - features, computed from entity pairs language

model, estimated on ClueWeb

In our results table we will use the notation +<comp> for
a system with a certain component added, and -<comp>
when it is removed. For example, the baseline system will
be denoted as“Aqqu”. The same system with additional date
range filter query templates and notable types score model is
denoted as “Aqqu +DF+T”, which represents the same system
as “Text2KB -WebEnt-Web-CQA-CL” (we will call it Text2KB
(base)). Our full system “Text2KB” can be also denoted as
“Aqqu +DF+T+WebEnt+Web+CQA+CL”.
Components: First, we analyze the improvements intro-
duced by different components of our system (Table 4). As
we can see, additional date range filters and notable types
model (Aqqu+DF+T) are responsible for an increased recall
and a drop in precision compared to the baseline model. Fea-
tures generated from Wikipedia search results, CQA data
and ClueWeb entity pair language models (+Wiki+CQA+CL)
improve average F1 by 0.007 (+1.4%) compared to the base
model, adding entity linking using Wikipedia search results
improves results even more (+3%).

Web search results (+Web+CQA+CL) turned out to be more
helpful than Wikipedia results (+Wiki+CQA+CL), which is nat-
ural since Wikipedia is a subset of the web. This was one
of the reasons we didn’t combine Wikipedia and Web search
together. Finally, entity linking and all text-based features
combined achieves an even higher score, proving that their
contributions are independent.
Data Sources: We now anylize the contribution of the dif-
ferent data sources. We will remove a group of web search,
CQA or Clueweb-based features and see how the perfor-
mance of the whole system changes (Table 5). As we can
see, all data sources have an impact on the system perfor-
mance, and web search results based features provide the
most useful signal for answer ranking.
Feature Importance for Ranking: Figure 5 plots a sub-
set of features ranked by their Gini index-based importance
scores. The figure supports the observation that web search
results features are the most useful, however, other text data
sources also contribute to the improvement.

In summary, Text2KB significantly outperforms the base-
line system, and each of the introduced components con-
tributes to this improvement. Web search results data turned

System R P F1
Aqqu 0.604 0.498 0.494
Text2KB (base) = Aqqu+DF+T 0.617 0.481 0.499
+Wiki+CQA+CL 0.623 0.487 0.506
+WikiEnt +Wiki+CQA+CL 0.632 0.498 0.514
+WebEnt 0.627 0.492 0.508
+Web+CQA+CL 0.634 0.497 0.514
+WebEnt +Web+CQA+CL 0.635 0.506 0.522

Table 4: Average Recall (R), Precision (P), and F1
of Aqqu and Text2KB system with and without dif-
ferent components. +A means that a component A
is added to the Text2KB (base) system. The list of
components is given in Section 4.5.

System R P F1
Text2KB (Web search) 0.635 0.506 0.522
Text2KB -Web 0.633 0.496 0.513
Text2KB -CQA 0.642 0.499 0.519
Text2KB -CL 0.644 0.505 0.523
Text2KB -CQA-CL 0.642 0.503 0.522
Text2KB -Web-CQA 0.631 0.498 0.514
Text2KB -Web-CL 0.622 0.493 0.508

Table 5: Average Recall (R), Precision (P), and F1
of Text2KB with and without features based on web
search results, CQA data and ClueWeb collection.

out to be the most useful resource, and it significantly im-
proves the quality by helping with question entity identifi-
cation and candidate ranking. Next, we analyze the system
performance in more detail, and investigate factors for fu-
ture extension.

5. ANALYSIS AND DISCUSSION
We now investigate how our system would compare to

other systems on the same benchmark; then, we investigate
in depth the different error modes (Section 5.1), which helps
identify the areas of most substantial future improvements.

We took an existing KBQA systems and demonstrated
that by combining evidence from knowledge base and exter-
nal text resources we can boost the performance. A reason-
able question is whether the same approach will be helpful
to other systems, e.g., the currently best system – STAGG
[31]. STAGG differs from our baseline system Aqqu in the
components: entity linking algorithm, a set of query tem-

Figure 5: A plot of Gini importances of different features of our answer ranking random forest model (features
marked * are not text-based and are provided for comparison)

System F1
STAGG [31] 0.525
Text2KB + STAGG 0.532 (+1.3 %)
Text2KB + STAGG (Oracle) 0.606 (+15.4 %)

Table 6: Average F1 for combinations of Text2KB
and STAGG using a simple heuristic based on the
length of the answer list and Oracle upper bound

plates and ranking methods. Therefore, our approach is
complementary and should be helpful for STAGG as well.
To support this claim, we made an experiment to combine
answers of STAGG and Text2KB. One of the advantages of
the former is its set of filters, that restricts list results to en-
tities of certain type, gender, etc. Therefore, we combined
answers of STAGG and Text2KB using a simple heuristic:
we chose to use the answer returned by STAGG if the num-
ber of answer entities is less than in the Text2KB answer,
otherwise we use the answer of our approach. Table 6 gives
the results of the experiment, and as we can see the combi-
nation achieves a slightly better average F1 score. Alterna-
tively, we can look at the Oracle combination of the systems,
which always selects the answer with the higher F1. As we
can see such a combination results in a performance of 0.606,
which is much higher than either of the systems.

As we mentioned earlier, answers to 112 of the test ques-
tions in the WebQuestions dataset involve predicates that
weren’t observed in the training set, which may be a prob-
lem for approaches that rely on a trained lexicon. We eval-
uated both systems on these questions, and indeed the per-
formance is very low, i.e., the average F1 score of Text2KB
is 0.1640 compared to 0.1199 for STAGG7.

5.1 Error analysis
To get a better insights into the problems that remain, we

collected 1219 questions for which Text2KB didn’t return
completely correct answer, i.e., F1 score < 1. We manually
looked through a couple of hundreds of these examples and
grouped the problems into several clusters (Figure 6).

As we can see candidate ranking is still the major prob-
lem, and it accounts for ∼ 31% of the cases. The second
problem is incorrect ground truth labels (almost 25% of re-
ported errors). Another set of questions has incomplete or
overcomplete ground truth answer list. Typical examples
are questions asking for a list of movies, books, landmarks,

7Unfortunately, the number of questions is too low to show
statistical significance (p-value=0.16) of the difference

Figure 6: Distribution of problems with questions,
where Text2KB returns an answer with F1<1

etc. The ground truth answer usually contains ∼ 10 enti-
ties, whereas the full list is often much larger. This seems to
be an artifact of the labeling process, where the answer was
selected from the Freebase entity profile page, which shows
only a sample of 10 entities, while the rest are hidden be-
hind the “N values total” link. About 20% of the questions
are ambiguous, i.e., questions have no strict 1-1 correspon-
dence with any of the predicates and can be answered by
multiple ones without any obvious preferences. For exam-
ple, the question “what did hayes do?” can be answered by
profession, occupied position or some other achievements.
Another problem is when there is no predicate that answers
the question. For example, the question “what do people
in france like to do for fun?” doesn’t have a good match
among the facts stored in Freebase. The ground truth en-
tity Cycling comes from the list Olympic sport competitions
country participated8.

Text2KB components were quite effective in resolving some
of the problems. Web search results helped identify the right
question topical entity in a number of cases, e.g., “what
did romo do?” mentions only the last name of the Dallas
Cowboys quarterback and the baseline system were unable
to map it to the right entity. Web search results provides
more than enough evidence that“romo”refers to Tony Romo.
However, there are a number of loses, introduced by added
unrelated entities. For example, the entity I Love Lucy was
added for the question “what was lucille ball?”, because the
term lucy had high similarity with lucille. A portion of
these problems can be fixed by a better entity linking strat-
egy, e.g., [12]. An interesting example, when external text
resources improved the performance is the question “what
ship did darwin sail around the world?”. This is actually
a hard question, because the ship entity is connected to

8olympics.olympic_participating_country.athletes

the Charles Darwin entity through the “knownFor” predi-
cate along with some other entities like Natural selection.
Thus, the predicate itself isn’t related to the question, but
nevertheless, the name of the ship HMS Beagle is mentioned
multiple times in the web search results, and entity pair
model computed from ClueWeb also has high scores for the
terms “ship” and “world”.

There are several major reasons for the loses, introduced
by features based on external text resources. Some entities
often mentioned together and therefore one of them gets
high values of cooccurrence features. For example, the base-
line system answered the question “when did tony romo got
drafted?” correctly, but since Tony Romo is often followed by
Dallas Cowboys, Text2KB ranked the team name higher.
Another common problem with our features is an artifact
of entity linking, which works better for names and often
skips abstract entities, like professions. For example, the
correct answer to the question “what did jesse owens won?”
is an entity with the name Associated Press Male Ath-

lete of the Year, which is rarely mentioned or it’s hard
to find such mentions. Some problems were introduced by a
combination of components. For example, for“where buddha
come from?” a topical entity Buddhism was introduced from
search results, and it generated Gautama Buddha as one of
the answer candidates. This answer was ranked the highest
due to large number of mentions in the search results.

In summary, we show that ideas behind Text2KB could
be integrated into other systems and improve their perfor-
mance. The error analysis suggested that even though a sig-
nificant number of questions in the WebQuestions dataset
have incorrect or ambiguous ground truth labels, there is
still a room for improvement. In particular, the future work
for Text2KB will include a better strategy for entity link-
ing using external data sources and a better context model
for entity mentions in text documents, which can put more
weight on entities mentioned in the context related to the
question.

6. RELATED WORK
One well known annual benchmark in knowledge base

question answering is Question Answering over Linked Data
(QALD), started in 2011 [23]. These benchmarks use the
DBpedia knowledge base and usually provide a training set
of questions, annotated with the ground truth SPARQL
queries. In QALD-3 a multilingual task has been introduced,
and since QALD-4 the hybrid task is included. This task
asks participants to use both structured data and free form
text available in DBpedia abstracts. The formulation of the
hybrid task is the most relevant to our work, but there are
some key differences. Questions in the hybrid track are man-
ually created in such a way, that they can only be answered
using a combination of RDF and free text data. Secondly,
the hybrid task focuses on text data already present in a
KB, whereas we are exploring external text resources. In
general, because of the expensive labeling process, QALD
datasets are relatively small, for example, QALD-5 training
set for multilingual question answering includes 300 exam-
ples and 40 for the hybrid task, with 50 and 10 test questions
correspondingly. Therefore, due to the scale of datasets and
slightly different focus of tasks, we did not evaluate our tech-
niques on the QALD benchmarks, but intend to explore it
in the future.

Another benchmark dataset – WebQuestions – was intro-
duced by Berant et al. [6]. The approaches proposed since

then differ in the algorithms used for various components,
and, what is more relevant to our work, the use of external
datasets. WikiAnswers corpus of question clusters can be
used to learn a question paraphrasing model, which helps
to account for different ways a question can be formulated
[7]. Another approach to learn term-predicate mappings is
to mine them from a large text corpus [30], weakly labeled
using distant supervision [18]. In the current paper, we build
on this idea in two ways: by introducing a new data source
(CQA archives), and by mining a language model for each
mentioned entity pair, rather than predicates. Another ap-
proach to generate more training data is to automatically
convert RDF triples to questions using entity and predicate
names [10]. Finally, many systems work with distributed
vector representations for words and RDF triples and use
various deep learning techniques for answer selection [10,
31]. In all of these works, external resources are used to train
a lexicon for matching questions to particular KB queries.
In our work, we use external resources in a different way:
we are targeting better candidate generation and ranking
by considering the actual answer entities rather than predi-
cates used to extract them.

In general, combining different data sources, such as text
documents and knowledge bases, for question answering has
been attempted before, and it has been already implemented
in hybrid QA systems [2, 5]. Such systems typically have dif-
ferent pipelines that generate answer candidates from each
of the data sources independently, and merge them to select
the final answer at the end. We make a step towards inte-
gration of approaches, by incorporating text resources into
the different stages of knowledge base question answering
process. This is similar to the work of [22], who explored
the use of entity types and descriptions from a KB for text-
based question answering, and [13] explored such semantic
annotations for ad-hoc document retrieval.

An alternative approach to QA is by using Open Infor-
mation Extraction [15], which extract semi-structured data
from text. OpenIE repositories can be queried using struc-
tured query languages, and at the same time allows keyword
matching against entities and predicates [16]. In this work,
we are borrowing an idea of learning about entity relation-
ship via natural language phrases connecting them. How-
ever, since we do not need to extract clean set of relation
tuples, we can keep all kinds of phrases, mentioned around
entity pairs.

M. Yahya et al [27] proposed extending SPARQL triple
patterns with text keywords, and using certain query relax-
ation techniques to improve the robustness of KBQA sys-
tems. Query relaxation drops certain triple patterns from
SPARQL query and adds the corresponding question words
as keywords to other triple patterns. The idea of query re-
laxations and using text in SPARQL queries was extended
in [26], which proposed a framework for querying extended
knowledge graphs, comprising of a combination of KB and
OpenIE triples. These ideas are complimentary to our work,
because our use of text data improves the matching between
question phrases and KB concepts, whereas query relax-
ations are applied when a good match wasn’t found. An-
other KB-Text hybrid approach, proposed in [25], utilizes
text resources as a post-processing step for answer valida-
tion and filtering. In contrast, Text2KB integrates external
textual information into all stages of question answering, re-
sulting in more robust and overall higher performance than
previously explored enhancements done in isolation.

7. CONCLUSIONS AND FUTURE WORK
Our work showed that unstructured text resources can be

effectively utilized for knowledge base question answering
to improve query understanding, candidate answer gener-
ation and ranking. We focused on three particular tech-
niques and associated text information sources: web search
results for query understanding and candidate ranking, com-
munity question answering data for candidate generation,
and text fragments around entity pair mentions for ranking.
Certainly, there are more resources that could be poten-
tial adapted, e.g., entity profile pages like Wikipedia, news
sources, textbooks, and many others. However, we believe
that the proposed approach is general enough that it could
be extended and successfully incorporate these other diverse
text sources.

In the future, we plan to extend our work to the more
open setup, similar to the QALD hybrid task, where ques-
tions no longer have to be answered exclusively from the
KB. This would require extending the described techniques,
and creating new QA benchmarks.

ACKNOWLEDGMENTS: This work was partially sup-
ported by the Yahoo Labs Faculty Research Engagement
Program (FREP). We also thank the anonymous reviewers
for their constructive comments.

8. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,

R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data. Springer, 2007.

[2] K. Barker. Combining structured and unstructured
knowledge sources for question answering in watson.
In DILS, Lecture Notes in Computer Science.
Springer, 2012.

[3] H. Bast and E. Haussmann. More accurate question
answering on freebase. Proceedings of CIKM, 2015.

[4] P. Baudǐs. Systems and approaches for question
answering. 2015.

[5] P. Baudǐs and J. Šedivỳ. Modeling of the question
answering task in the yodaqa system. In Experimental
IR Meets Multilinguality, Multimodality, and
Interaction. Springer, 2015.

[6] J. Berant, A. Chou, R. Frostig, and P. Liang.
Semantic parsing on freebase from question-answer
pairs. In Proceedings of EMNLP, 2013.

[7] J. Berant and P. Liang. Semantic parsing via
paraphrasing. In Proceedings of ACL, 2014.

[8] J. Berant and P. Liang. Imitation learning of
agenda-based semantic parsers. Transactions of the
Association for Computational Linguistics, 3, 2015.

[9] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: A collaboratively created graph
database for structuring human knowledge. In
Proceedings of ICMD, 2008.

[10] A. Bordes, S. Chopra, and J. Weston. Question
answering with subgraph embeddings. In Proceedings
of EMNLP, 2014.

[11] E. Brill, S. Dumais, and M. Banko. An analysis of the
askmsr question-answering system. In Proceedings of
EMNLP. Association for Computational Linguistics,
2002.

[12] M. Cornolti, P. Ferragina, M. Ciaramita, H. Schütze,
and S. Rüd. The smaph system for query entity

recognition and disambiguation. In Proceedings of the
First International Workshop on Entity Recognition
and Disambiguation, 2014.

[13] J. Dalton. Entity-based Enrichment for Information
Extraction and Retrieval. PhD thesis, University of
Massachusetts Amherst, 2014.

[14] H. T. Dang, D. Kelly, and J. J. Lin. Overview of the
trec 2007 question answering track. In Proceedings of
TREC, 2007.

[15] A. Fader, S. Soderland, and O. Etzioni. Identifying
relations for open information extraction. In
Proceedings of EMNLP, 2011.

[16] A. Fader, L. Zettlemoyer, and O. Etzioni. Open
question answering over curated and extracted
knowledge bases. In Proceedings of SIGKDD, 2014.

[17] J. Lin. An exploration of the principles underlying
redundancy-based factoid question answering.
Transactions of ACM, 25(2), Apr. 2007.

[18] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled
data. In Proceedings of ACL, 2009.

[19] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object
retrieval in the web of data. In Proceedings of WWW,
2010.

[20] D. Savenkov, W.-L. Lu, J. Dalton, and E. Agichtein.
Relation extraction from community generated
question-answer pairs. In Proceedings of NAACL:
Student Research Workshop, 2015.

[21] V. I. Spitkovsky and A. X. Chang. A cross-lingual
dictionary for english wikipedia concepts. In
Proceedings of LREC, 2012.

[22] H. Sun, H. Ma, W.-t. Yih, C.-T. Tsai, J. Liu, and
M.-W. Chang. Open domain question answering via
semantic enrichment. Proceedings of WWW, 2015.

[23] C. Unger, C. Forascu, V. Lopez, A.-C. N. Ngomo,
E. Cabrio, P. Cimiano, and S. Walter. Question
answering over linked data (qald-5). In Proceedings of
CLEF, 2015.

[24] D. Vrandečić and M. Krötzsch. Wikidata: A free
collaborative knowledgebase. Communications of
ACM, (10), Sept. 2014.

[25] K. Xu, Y. Feng, S. Reddy, S. Huang, and D. Zhao.
Enhancing freebase question answering using textual
evidence. arXiv preprint arXiv:1603.00957, 2016.

[26] M. Yahya, D. Barbosa, K. Berberich, Q. Wang, and
G. Weikum. Relationship queries on extended
knowledge graphs. In Proceedings of WSDM, 2016.

[27] M. Yahya, K. Berberich, S. Elbassuoni, and
G. Weikum. Robust question answering over the web
of linked data. In Proceedings of the CIKM, 2013.

[28] X. Yao. Lean question answering over freebase from
scratch. In Proceedings of NAACL Demo, 2015.

[29] X. Yao, J. Berant, and B. Van Durme. Freebase qa:
Information extraction or semantic parsing? In
Proceedings of ACL, 2014.

[30] X. Yao and B. Van Durme. Information extraction
over structured data: Question answering with
freebase. In Proceedings of ACL, 2014.

[31] W.-t. Yih, M.-W. Chang, X. He, and J. Gao. Semantic
parsing via staged query graph generation: Question
answering with knowledge base. In Proceedings of
ACL, 2015.

