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ABSTRACT
In this paper, we present our approach and findings in participat-
ing the 2012 Yandex Relevance Prediction Challenge. Our ap-
proach has two goals: on one hand, we aim to address four types
of biases, namely, position-bias, perception-bias, query-bias, and
session-bias to better interpret the clickthrough information; on the
other hand, we aim to address the clickthrough sparsity by exploit-
ing various back-off strategies. We use gradient boosted regression
trees to combine the different features and model the interactions
among them. Our final submission ranks 3rd (AUC 0.6635) among
the prize eligible participants on the first subset of test queries, but
drops to 8th (AUC 0.6536) on the second (hidden) subset, which
is potentially due to over-fitting. In this paper, we also discuss
our post-competition efforts in addressing this issue through cross-
validation and more careful model selection.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and Retrieval

General Terms
Design, Experimentation, Human Factors

Keywords
relevance prediction, user behavior modeling, biases and sparsity

1. INTRODUCTION
Predicting the relevance of URLs based on user search behav-

ior such as clickthrough is an essential yet very challenging prob-
lem. The 2012 Yandex Relevance Prediction Challenge was held
to consolidate and scrutinize the work on this problem, by provid-
ing a fully anonymized dataset shared by Yandex which has clicks
information and relevance judgements. In this paper, we present
our approach and findings in participating in the Relevance Predic-
tion Challenge. Clickthrough has been shown valuable for infer-
ring search result relevance, but the usefulness of clickthrough data
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is limited by a number of biases and its sparsity. Some biases that
strongly influence the clickthrough are:

• Position-bias: Search results are presented as a ranked list,
lower-ranked URL are less likely to be examined. As a result,
a lower-ranked relevant URL may have lower CTR (click-
through rate) than a higher-ranked irrelevant URL simply be-
cause very few searchers have seen the URL.

• Perception-bias: a searcher’s action is based primarily on the
“perceived” relevance, where a searcher guesses the URL
relevance based on a short summary generated by the search
engine. However, the “perceived” relevance may be incon-
sistent with the actual “intrinsic” relevance, where a searcher
clicks on a result may end up finding that it is not relevant.

• Query-bias: User behavior varies for different queries. For
example, 20 seconds of dwell time may indicate relevance
for an easy query but irrelevance for a difficult one.

• Session-bias: The session-bias includes both behavioral vari-
ations from user and intent. Note that, intent is different from
query as a query may carry multiple intents while an intent
can be represented by different queries.

In addition to the above biases, clickthrough also suffers from spar-
sity – it is a good indicator of document relevance for relatively fre-
quent queries, but for infrequent queries/URLs clickthrough tends
to be sparse and therefore not very reliable. To improve the rel-
evance prediction from mining the searcher interaction data, our
approach aims at addressing the above issues. The rest of paper is
organized as follows. We first overview the related work in Section
2 and describe the task of the challenge in more detail in Section
3. Then, in Section 4, 5, and 6, we describe the features, learning
algorithms, and model selection we used for tackling the challenge.
We then present and discuss the results and findings in Section 7.
Finally, Section 8 concludes the paper.

2. RELATED WORK
In this section, we will describe the related work in address-

ing the biases and sparsity issues in user behavior. To address
the position bias, several click models are proposed such as the
Cascade model [7], the user browsing model (UBM) [9], the Dy-
namic Bayesian Network (DBN) click model, the Dependent Click
Model (DCM) [12], and the Click Chain Model (CCM) [11]. Our
approach adapts the DBN model and incorporates the predicted rel-
evance as part of our feature set. Many other models are proposed
to distinguish the “perceived relevance” and “intrinsic” relevance,
such as the Session Utility Model (SUM) [8] and the Post-Click



Click model (PCC) [21]. For example, Dupret and Liao [8] as-
sumed that all sessions ending with a click are successful, and the
last clicked document must contribute to the success. Zhong et. al.
[21] combined post-click behaviors (e.g. the page dwell time) with
click behaviors to provide an unbiased estimation of relevance. The
usefulness of the post-click browsing behavior for improving web
search ranking was also demonstrated by Agichtein et. al. [2].
Inspired by this prior work, we also derive features based on the
page dwell time and last clicks of queries for addressing the per-
ception bias. A well-known classification of web queries proposed
by Broder [4] is into three types: navigational, informational, and
transactional. Different types of queries could lead to quite differ-
ent user behavior, e.g. for navigational queries, users leave immedi-
ately after reaching the target site; while for informational queries,
users may need to click several pages to acquire the information. In
a slightly different dimension, researchers [3, 1, 13] also found that
that user behavior varies as the level of query difficulty changes –
for example, searchers working on difficult queries tend to spend a
longer time on the search result page than on easy queries. Consid-
ering these differences, we compute query-level features and their
deviations of URL features to alleviate the query bias. To char-
acterize the bias between the user search intent and the query in
a search session, Hu et. al. [14] proposed the intent hypothesis.
Zhang et. al. [20] further proposed a Task-Centric click Model
(TCM) by characterizing user behavior in a search session as an
entirety. The model is demonstrated to be especially useful for
infrequent queries. Based on the intent hypothesis, we compute
session-level features with normalization to account the session-
bias. As many queries and documents have no or very few clicks,
the usefulness of using clickthrough features for predicting rele-
vance is very limited. Therefore, Craswell and Szummer [6] pro-
posed to use random walks on the click graph to smooth the noisy
and sparse click data. Gao et. al. [10] compared two other smooth-
ing methods: query clustering and discounting. Besides using the
smoothing techniques, in this paper we also proposed various back-
off strategies to solve the sparsity problem.

3. PROBLEM STATEMENT
The task is to predict labels of documents for the given test set

of queries, using the shared dataset containing the search log and
queries with labeled URLs. The search log is supposed to be used
both for training the prediction models and for prediction of the
labels for the test set of queries.

3.1 Dataset
The dataset includes user sessions extracted from Yandex logs,

with queries, URL rankings and clicks. Unlike previous click datasets,
it also includes relevance judgments for the ranked URLs, for the
purposes of training relevance prediction models. To allay pri-
vacy concerns the user data is fully anonymized. So, only mean-
ingless numeric IDs of queries, sessions, and URLs are released.
The queries are grouped only by sessions and no user IDs are pro-
vided. The dataset consists of several parts. Specifically, in the
dataset, there are 30,717,251 unique queries, 117,093,258 unique
urls, 43,977,859 sessions, and 340,796,067 records in total. 71,930
query-region-url triples for the total query set (training + test) were
assessed and 8,410 query-region pairs were with assesed urls (train-
ing + test). The logs are about two years old and do not contain
queries with commercial intent detected with Yandex proprietary
classifier.
Relevance Labels: Labels were assigned by Yandex judges to a
subset of URLs appearing in the logs. Labels are binary: Relevant
(1) and Irrelevant (0). Labels were assigned during the course of

a year after the logs had been collected. URLs were judged based
not only on the text of the query, but also on the region of the user,
if it was necessary, but not in every case. So, the presence of the
RegionID does not necessarily mean that the relevance is region-
specific.

3.2 Evaluation metric
Submissions were evaluated using Area Under receiver operat-

ing Curve (AUC) [15] metric, which was calculated using the rank-
ing of URLIDs provided by participants for each query and then
averaged across all queries. Only judged documents were consid-
ered, i.e. all documents without labels were ignored during the
evaluation. AUC has been used as measure of ranking performance
of binary classifiers and has been shown to be more robust than
accuracy metric [15]. The AUC represents the probability that a
classifier will rank a randomly chosen positive instance higher than
a randomly chosen negative one. In terms of pairwise compari-
son AUC can be calculated as ratio of the number of correct pair-
wise orderings to the number of all possible pairs. This quantity
is also called Wilcoxon-Mann-Whitney (WMW) [19] and can be
expressed as follows:

W =

∑p−1
i=0

∑n−1
j=0 I(xi, yj)

pn
(1)

I(xi, yj) =

{
1 if f(xi) > f(yj)

0 otherwise
(2)

where p is the number of relevant document, n is the number of not
relevant documents, xi is the ith relevant document and yj is the
jth not relevant document. The function f(x) assigns the score to
the document x which is used to derive document ranking.

4. FEATURES
Clickthrough rate (CTR) is a good indicator of document rel-

evance as it is a signal about user preferences among presented
search results. However, the four types of biases and data sparsity
make it hard to predict document relevances based on raw CTR. In
this section, we will describe the features we develop for address-
ing the four types of biases and data sparsity.

Position-Bias: The raw CTR calculation assumes that all the shown
documents are examined, which is not always the case, especially
for low-ranked documents. To this end, we adapt the Dynamic
Bayesian Network (DBN) click model. In addition, we calculated
CTR for each position separately, that is clicks when document was
on i-th position divided by the number of impressions on i-th posi-
tion. This could help machine learning algorithm to find separate
CTR thresholds for different positions. [17] suggests that “Click-
Skip above” and similar behavior patterns can be a good evidence
of pairwise document preferences. To get use of this idea we in-
cluded the following features: the number of impressions when
document below was clicked but current document wasn’t clicked
divided by the total number of impressions, clicks when document
above was skipped divided by the number of clicks and a couple of
similar features (document clicked, but both documents were not
around and vice versa).
Perception-Bias: As clickthrough reflects “perceived relevance”,
we exploit post-click signals such as dwell time and session-level
click sequence to model “intrinsic relevance”. For example, longer
dwell time and the last click in a query/session may indicate higher
relevance. Along with average/median dwell time per click, and the
number of times the document was clicked last in the session we



Name Description Group
UrlTimeBeforeClk average time before url is clicked in SERP -

MultClkShows query shows with more then one click on the given url -
OnlyClkInSession number of times the clicked url was the only click in session -

ithPosCtr url CTR on i-th position position-bias
DBN url relevance by DBN model position-bias

LastClkInSerp the fraction of clicks which were the last for query position-bias
SkipClkAboveBelow url skipped, clicked below and above impressions position-bias

SkipClkBelow url skipped, clicked below impressions position-bias
ClkSkipAbove url clicked, skipped above impressions position-bias

InverClicks url inversion clicks rate (click below, then click on the given url) position-bias
AveClkPos average click rank for url position-bias

DwellPerClk url average dwell time per click perception-bias
SatClk/TotalClk the number of Sat clicks over total number of clicks perception-bias

SatCtr url Sat CTR (with two different thresholds) perception-bias
DSatCtr url DSat CTR (with two different thresholds) perception-bias

LastClkInSession url last clicks in session / clicks perception-bias
AveQueryClkCount saverage number of clicks for query query-bias
QueryClickRankDist average (across query) sum of absolute difference between ranks for adjacent

clicks
query-bias

QueryTimeBeforeFirstClk average time before first click for the query query-bias
QueryNoClkShows query shows when there were no clicks query-bias
AveQueryClkPos query average click pos query-bias

SatClkBeforeInQuery the number of Sat clicks happened before the current url was clicked query-bias
UrlClkMoreAveSessDwell url clicks with more then average session dwell time session-bias
UrlClkLongestSessDwell url clicks with longest dwell time among session clicks session-bias

AveSessionDuration average session duration session-bias
AveUrlRank average url rank sparsity
SmoothCtr smoothed url CTR sparsity

Query-Url, Url-Region, ... back-off version of all above features sparsity

Table 1: Example of features used and biases they target

used a couple of thresholds for dwell time to calculate Sat (clicks
with dwell time more then some threshold) and DSat CTR (clicks
with dwell time less then some threshold) of the document.
Query-Bias: User behavior varies for different queries. For exam-
ple, 20 seconds of dwell time may indicate relevance for an easy
query but irrelevance for a difficult one. To this end, we derive
query features (e.g., mean/variation of click positions, average ctr,
average time before first click, etc.) and normalize the URL fea-
tures (e.g., dwell time) by query averages. For example, we calcu-
lated the number of times the document was clicked and dwell time
was more then average for all clicks for this query.
Session-Bias: The session-bias encodes both behavioral variations
from user and intent. Note that, intent is different from query as a
query may carry multiple intents while an intent can be represented
by different queries. To address this bias, we compute session fea-
tures (e.g., session length) and normalize the URL features (e.g.,
click position in session) by the session averages. For example, we
used all clicks in a session to calculate average/median dwell time
and used this value as a threshold for the given document click
dwell time. We also used the fact that a document was clicked and
had the longest dwell time among all session clicks.
Sparsity: Behavior features are good indicators of document rel-
evance for relatively frequent queries, but for infrequent queries,
regions, URLs they tend to be sparse and therefore not very reli-
able. To address this issue we augment our feature set with back-
off versions, namely in addition to query-region-url triple we also
derive features for query-url, query, query-region, region-url and
url. We also incorporate smoothed-CTR by adding pseudo counts

to address sparsity.
Besides behavior features, the dataset gives us another kind of rele-
vance evidence - original ranking. Even though we might not have
enough click data to make a reasonable guess about document rel-
evance, we still may use original ranking. So, we back-off to the
original ranking (a proxy of clickthrough-orthogonal signals) when
the clickthrough information is insufficient or not reliable (e.g.,
query is very difficult or infrequent). To represent original rank-
ing, we use average rank position of URL. Together with the query
features (e.g., frequency, CTR, averaged click position), we allow
the machine learning algorithms to trade-off between the raw pre-
dictors and the various back-offs. Table 1 presents some of the
features we used for our final submission.

5. LEARNING ALGORITHMS
In this section we describe two machine learning algorithms that

we used to learn an optimal ranking function.

5.1 AUC-Rank
With this algorithm we aim to learn linear ranking function op-

timal in the sense of AUC metric on the training data. The AUC-
rank is formulated as a regression problem, where we are trying
to regress document relevance score given features derived from
search engine log data. As was noted by previous work of [5] it is
difficult to optimize AUC metric “as is” directly, since it involves
calculation of indicator function 1 for pairwise comparison of can-
didate documents. We follow [5] in approximating AUC with sig-



moid function and use this surrogate as our objective function.

AUCsoft =

∑p−1
i=0

∑n−1
j=0 sigmoidβ(f(xi, w)− f(yj , w))

pn
(3)

sigmoidβ(x) =
1

1 + exp(−βx) (4)

where p is the number of relevant document, n is the number of not
relevant documents for a given query, xi is the ith relevant docu-
ment and yj is the jth not relevant document. For simplicity, we
use linear function to calculate document score, i.e. f(x,w) =∑d
k=0 wkxk, where x ∈ Xd is feature vector corresponding to the

URL in the training or test set and w ∈ Xd is the weight vector.
AUC-rank finds the weight vector w that maximizes AUCsoft on
training set. The continuous and convex nature of our soft version
of AUC allows us to optimize it efficiently using gradient descent
algorithm. We use limited memory BFGS method [16] to choose
the step size during the grading descent.
It is worth noting the fact that for queries where all documents
have the same label - either relevant or not relevant the both AUC
and AUCsoft are not defined. Therefore, we augment our objec-
tive function with regression like squared loss in order to make
use of training data for queries with undefined AUC. Finally, to
avoid overfitting we introduce L2-norm regularization on weight
vector w. Later modification of the AUC-Rank referred as AUC-
Rank+Regression in the result section.

5.2 Gradient Boosted Regression Trees
The second algorithm is GBRT (Gradient Boosted Regression

Trees), which is a method for generating multiple weak learners
(in our case, CART regression trees) and using them to get an ag-
gregated predictor. It builds the model in a stage-wise manner like
other boosting methods do, and it generalizes them by allowing
optimization of an arbitrary differentiable loss function. The ad-
vantage of this non-linear regressor is the advanced expressiveness,
which can help model the complex relationships among the fea-
tures, but as a more complicated model it may not be applicable in
certain large-scale scenarios. We use the pGBRT (Parallel Gradi-
ent Boosted Regression Trees) [18] implementation in our experi-
ments.

6. METHODS COMPARED
We compare 21 models, including 2 baseline models represent-

ing the original ranking and the raw CTR (Clickthrough Rate), 3
models trained using all the features and the three different learn-
ing algorithms respectively, 8 models with all the back-off levels
enabled but varying feature group combinations, and 8 models with
all feature groups included but varying the combinations of differ-
ent back-off levels.
Original Ranking Baseline: The first baseline (OrigRank) repre-
sents the original search engine ranking algorithm, which typically
exploits various signals that are orthogonal to the behavioral fea-
tures, such as link structure, document quality and query-document
similarity. Specifically, for a given query-region-URL triple, the
relevance score of an URL is computed as a weighted linear com-
bination of the probabilities of the URLs ranked at different posi-
tions in response to the query-region pair, where higher weights are
given to the higher ranks. The equation we use is given as below,
where i represents the rank of an URL, #imprsi represents the
number of impressions at certain rank i, and #imprs represents

the overall number of impressions.

score =

10∑
i=1

(10− i)#imprsi
#imprs

(5)

Raw CTR Baseline: The second baseline is the raw CTR (RawCTR),
which is probably the most straightforward way of utilizing the
clickthrough information. Given a query-region-URL triple, it is
computed as #clks/#imprs, where #clks and #imprs repre-
sent the numbers that the URL was clicked and shown respectively
in response to the query-region pair.
Full Model Runs: Three models are trained using all the feature
groups and all the back-off levels enabled, namely, the logistic re-
gression models (AUC-Rank), (AUC-Rank+Regression), and the
gradient boosted regression trees full model (GBRT_all).
Single Feature Group Runs: Four models are trained using the
gradient boosted regression trees with all the back-off levels en-
abled and with each single group of features, namely, the position-
bias (GBRT_position), perception-bias (GBRT_perception), query-
bias (GBRT_query), and session-bias (GBRT_session) groups.
Feature Ablation Runs: Four models are trained using the gra-
dient boosted regression trees with all the back-off levels enabled
and with each single group of features removed from the full model,
namely, removing the position-bias group (GBRT_no.position), re-
moving the perception-bias group (GBRT_no.perception), remov-
ing the query-bias group (GBRT_no.query), removing the session-
bias group (GBRT_no.session).
Single Back-off Runs: Four models are trained using the gradi-
ent boosted regression trees with all the feature groups and with
each single level of back-off enabled, namely, the query-region-url
triple (GBRT_query-region-url), query-url pair (GBRT_query-url),
region-url pair (GBRT_region-url), and the url features (GBRT_url)
Back-off Ablation Runs: Four models are trained using the gra-
dient boosted regression trees with all the feature groups and with
each single level of back-off removed, namely, removing the query-
region-url triple (GBRT_no.query-region-url), removing the query-
url pair (GBRT_no.query-url), removing the region-url pair fea-
tures (GBRT_no.region-url), and the url features (GBRT_no.url)

7. RESULTS & DISCUSSIONS
In this section, we describe and discuss about our experimen-

tal results and findings. The results reported are average AUC’s
across 5-fold cross validation using the training set, as the test set
for evaluating final submissions was not available at the time of this
publication1. We start by presenting our main results by comparing
our full models with the two baselines, and move on to comparing
different feature groups and different back-off strategies. Finally,
we discuss the effects of tuning the learning parameters of our non-
linear full model and the importance of individual features.
The main results are summarized in Table 2. As we can see, all
our three full models significantly outperform the two baselines,
demonstrating the effectiveness of our proposed features in address-
ing the sparsity and various biases in the interaction data. The non-
linear gradient boosted regression trees (GBRT) classifier outper-
forms the linear logistic regression AUC-Rank classifier, support-
ing our intuition that the GBRT is more powerful in modeling the
complex interactions among different features. However, the linear
AUC-Rank models are still useful in cases where datasets are large-
scale and the more computationally expensive GBRT model might
1The absolute AUC numbers on the training set typically seem
lower than those for the test set according to our experiments (e.g.,
one of our methods achieved AUC 0.626 for the training set and
0.636 for the test set in the leaderboard).



Method AUC Improvement(%)
GBRT_all 0.6574 7.3
AUC-Rank + Regression 0.6495 6.0
AUC-Rank 0.6337 3.4
RawCTR 0.6212 1.4
OrigRank 0.6126 n/a

Table 2: Average AUC in single run of 5-fold cross valida-
tion compared for baseline methods, AUC-rank and GBRT full
models

Method AUC Improvement(%)
GBRT_all 0.6574 7.3
GBRT_session 0.6468 5.6
GBRT_perception 0.6430 5.0
GBRT_query 0.6412 4.7
GBRT_position 0.6307 3.0
OrigRank 0.6212 n/a

Table 3: Average AUC in 5-fold cross validation for models us-
ing features of single bias type

Method AUC Improvement(%)
GBRT_all 0.6574 7.3
GBRT_no.position 0.6555 7.0
GBRT_no.perception 0.6543 6.8
GBRT_no.session 0.6530 6.6
GBRT_no.query 0.6465 5.5
OrigRank 0.6126 n/a

Table 4: Impact of feature ablation on model performance, bro-
ken down by bias type

not be applicable. Interestingly, the RawCTR baseline achieves
higher overall AUC than the OrigRank baseline, showing the im-
portant value of the user behavioral signals.

Single Feature Group Runs: The results are summarized in Ta-
ble 3, with the different feature groups ranked in AUC-descending
order. As we can see, all the single feature groups outperform
the RawCTR baseline and under-perform the GBRT_all full model.
Among the four different feature groups, the session-bias feature
group (GBRT_session) performs the best, followed fairly closely by
the perception-bias (GBRT_perception) feature group and query-
bias (GBRT_query) feature group, and then followed by position-
bias (GBRT_position) feature group with a bigger gap.

Feature Ablation Runs: The results are summarized in Table 4,
with the different feature groups ranked in AUC-descending or-
der. Again, all the feature combinations outperform the RawCTR
baseline and under-perform the GBRT_all full model. Similar to
the results in Table 3, the position-bias features seem to contribute
the least, removing which only decreases the AUC from 0.6574 to
0.6555. Interestingly, removing the query-bias feature group de-
crease the performance most substantially, which is likely due to
the weaker correlation of query feature group with the other groups
of features. As a results, adding query feature group provides the
most additional predictive power when the other groups are pre-
sented, even though by itself it is not the most predictive.

Method AUC Improvement(%)
GBRT_all 0.6574 7.3
GBRT_query-url 0.6435 5.0
GBRT_query-region-url 0.6367 3.9
GBRT_url 0.6360 3.8
GBRT_region-url 0.6313 3.1
OrigRank 0.6126 n/a

Table 5: Average AUC in 5-fold cross validation for models us-
ing back-off features

Single Back-off Group Runs: The results are summarized in Ta-
ble 5. Intuitively, adding query and region information would in-
crease the accuracy of estimating the url statistics, and ignoring
these two factors would result in less accurate but potentially more
robust statistics. As we can see, the most predictive individual
back-off group is the query-url pair, followed by the query-region-
url triple, url and region-url pair. The notion of relevance does
not seem to vary much across different regions – ignoring region
reduces the data sparsity and improves AUC in both the cases of
query-region-url triple and the region-URL pair. In contrast, the
notion of relevance seem to vary more substantially across different
queries – keeping query information improves AUC significantly.

Back-off Group Ablation Runs: The results are summarized in
Table 6. As we can see, all the back-off groups contribute to the full
model. However, similar to what we have observed in Table 5, re-
moving the region information does not influence the performance
very significantly but removing the query information does.

Method AUC Improvement(%)
GBRT_all 0.6574 7.3
GBRT_no.region-url 0.6566 7.2
GBRT_no.url 0.6560 7.1
GBRT_no.query-region-url 0.6544 6.8
GBRT_no.query-url 0.6511 6.3
OrigRank 0.6126 n/a

Table 6: Impact of feature ablation on model performance, bro-
ken down by back-off level

Parameter Tuning for GBRT Algorithm: The GBRT algorithm
has three parameters that one needs to specify prior to training -
tree height (h), learning rate (λ), and number of boosting itera-
tions (N ). As the choice of particular values for these parameters
is rather non trivial, we perform parameter sweeping and search
for optimal parameter values in a grid manner. Based on our ex-
periments, tree height of 3 achieves the optimal performance in
most cases, thus, for simplicity, we fixed h = 3 and reduced our
search space to learning rate and number of boosting iterations.
For every value of N and λ we perform 5-fold cross validation and
report average AUC across the 5 folds. Figure 1 summarizes the
result of this experiment, where both z coordinate and the color
correspond to the AUC in 5-fold cross validation. We vary λ with
values {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5} and N with
values {50, 100, 200, 300, 400, 500, 1000, 2000}. We have found
that with λ = 0.1 and N = 200 GBRT achieves the best AUC per-
formance. The plot in Figure 1 confirms our intuition that smaller
values of learning rate together with higher number of boosting iter-



Figure 1: Average AUC in 5-fold cross validation plotted for different values of learning rate and boosting iterations

ations allow GBRT to make more accurate predictions and achieve
better performance overall.

Feature Importance: We ranked all features by importance using
χ2 criterion (Weka implementation) and some representative fea-
tures are given in Table 7. The features with the largest value of χ2

criterion are those connected with url click dwell times (perception-
bias). The feature ranked first by this criterion is the ratio of Sat
clicks over overall number of clicks for query-url pair. This sug-
gests that region isn’t important for most of the queries and query-
region-url level features are probably too sparse for some signifi-
cant number of documents to make good predictions of document
relevance. The feature ranked second is a back-off version of the
previous feature. This suggests us that there were not so many
popular urls in the dataset and aggregation of url features over all
queries gives us a good estimate of relevance of this document to
queries for which it was shown in top 10 results. Session level nor-
malization features can be found in the top of the ranked features
list. Features like clicks with more then average session dwell time
and clicks dwell time normalized by the session duration seems to
contribute to the document relevance. Features intended to deal
with position-bias and query-bias were ranked in the middle of the
list. The best features among those is url clicks when both docu-
ments around in the ranking were skipped / shows. The least values
of the criterion belong to average click position kind of features and
some query level features.

8. CONCLUSIONS
With this paper we introduce a model capturing user behavior

at different levels of granularity while eliminating four important
types of bias from clickthrough data. Our experimental results
show that the proposed behavioral features indeed provide addi-
tional and valuable information beyond original search result rank-
ing and raw clickthrough rate, and outperform these two baselines
in predicting editorial judgements of document relevance. Specifi-
cally, we found that post-click behavioral signals such as dwell time

Feature Name χ2

Query-Url SatClk/TotalClk 2268.104
Url SatClk/TotalClk 2086.372

Query-Url DwellPerClk 2079.000
Query-Region-Url SatClk/TotalClk 2014.117

...
Query-Url UrlClkMoreAveSessDwell 1981.104

Query-Url DwellPerSessDuration 1874.197
...

Query-Url TotalClkCount 1844.585
Query-Url LastClkInSerp 1844.585

Url LastClkInSerp 1844.585
...

Query-Region-Url DwellPerSessionDuration 1806.922
Query-Url LastClkInSession/Shows 1810.043

...
Query-Url SkipClkAboveBelow 1706.362

...
Query-Url SmoothCtr 1451.06

Query-Url # of SatClkBeforeInQuery 1402.967
...

Query-Url AveUrlRank 710.3
...

Query AveLastClkPos 0.0
Query-Region-Url AveClkPos 0.0

Table 7: Best individual features ranked by χ2 statistics

and the session-level information are among the most predictive
signals of document relevance; we also found that the query-level
signals are the most helpful among other features considered in this
paper. In combination, our features allow for significant improve-
ments of relevance prediction. Finally, we found that combination
of URL statistics with respect to a query as well as its back-off



versions such as overall URL statistics result in more robust and
accurate predictive model.

9. REFERENCES
[1] M. Ageev, Q. Guo, D. Lagun, and E. Agichtein. Find it if

you can: A game for modeling different types of web search
success using interaction data. In Proceeding of the 34th
International ACM SIGIR Conference on Research and
Development in Information Retrieval(SIGIR 2011), 2011.

[2] E. Agichtein, E. Brill, and S. Dumais. Improving web search
ranking by incorporating user behavior information. In
Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information
retrieval, SIGIR ’06, pages 19–26, New York, NY, USA,
2006. ACM.

[3] A. Aula, R. M. Khan, and Z. Guan. How does search
behavior change as search becomes more difficult? In
Proceedings of the 28th international conference on Human
factors in computing systems, CHI ’10, pages 35–44, New
York, NY, USA, 2010. ACM.

[4] A. Broder. A taxonomy of web search. SIGIR Forum,
36:3–10, September 2002.

[5] T. Calders and S. Jaroszewicz. Efficient auc optimization for
classification. Knowledge Discovery in Databases: PKDD
2007, pages 42–53, 2007.

[6] N. Craswell and M. Szummer. Random walks on the click
graph. In Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, SIGIR ’07, pages 239–246, New York,
NY, USA, 2007. ACM.

[7] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models. In
Proceedings of the international conference on Web search
and web data mining, WSDM ’08, pages 87–94, New York,
NY, USA, 2008. ACM.

[8] G. Dupret and C. Liao. A model to estimate intrinsic
document relevance from the clickthrough logs of a web
search engine. In Proceedings of the third ACM international
conference on Web search and data mining, WSDM ’10,
pages 181–190, New York, NY, USA, 2010. ACM.

[9] G. E. Dupret and B. Piwowarski. A user browsing model to
predict search engine click data from past observations. In
Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information
retrieval, SIGIR ’08, pages 331–338, New York, NY, USA,
2008. ACM.

[10] J. Gao, W. Yuan, X. Li, K. Deng, and J.-Y. Nie. Smoothing
clickthrough data for web search ranking. In Proceedings of
the 32nd international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’09, pages
355–362, New York, NY, USA, 2009. ACM.

[11] F. Guo, C. Liu, A. Kannan, T. Minka, M. Taylor, Y.-M.
Wang, and C. Faloutsos. Click chain model in web search. In
Proceedings of the 18th international conference on World
wide web, WWW ’09, pages 11–20, New York, NY, USA,
2009. ACM.

[12] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click
models in web search. In Proceedings of the Second ACM
International Conference on Web Search and Data Mining,
WSDM ’09, pages 124–131, New York, NY, USA, 2009.
ACM.

[13] Q. Guo, R. W. White, S. T. Dumais, J. Wang, and
B. Anderson. Predicting query performance using query,
result, and user interaction features. In RIAO ’10: Adaptivity,
Personalization and Fusion of Heterogeneous Information,
pages 198–201, Paris, France, France, 2010. LE CENTRE
DE HAUTES ETUDES INTERNATIONALES
D’INFORMATIQUE DOCUMENTAIRE.

[14] B. Hu, Y. Zhang, W. Chen, G. Wang, and Q. Yang.
Characterizing search intent diversity into click models. In
Proceedings of the 20th international conference on World
wide web, WWW ’11, pages 17–26, New York, NY, USA,
2011. ACM.

[15] C. Ling, J. Huang, and H. Zhang. Auc: a statistically
consistent and more discriminating measure than accuracy.
In International Joint Conference on Artificial Intelligence,
volume 18, pages 519–526. LAWRENCE ERLBAUM
ASSOCIATES LTD, 2003.

[16] J. Nocedal. Updating quasi-newton matrices with limited
storage. Mathematics of computation, 35(151):773–782,
1980.

[17] F. Radlinski and T. Joachims. Query chains: Learning to rank
from implicit feedback. In ACM SIGKDD International
Conference On Knowledge Discovery and Data Mining
(KDD), pages 239–248, 2005.

[18] S. Tyree, K. Q. Weinberger, K. Agrawal, and J. Paykin.
Parallel boosted regression trees for web search ranking. In
Proceedings of the 20th international conference on World
wide web, WWW ’11, pages 387–396, New York, NY, USA,
2011. ACM.

[19] F. Wilcoxon. Individual comparisons by ranking methods.
Biometrics Bulletin, 1(6):80–83, 1945.

[20] Y. Zhang, W. Chen, D. Wang, and Q. Yang. User-click
modeling for understanding and predicting search-behavior.
In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’11, pages 1388–1396, New York, NY, USA, 2011. ACM.

[21] F. Zhong, D. Wang, G. Wang, W. Chen, Y. Zhang, Z. Chen,
and H. Wang. Incorporating post-click behaviors into a click
model. In Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information
retrieval, SIGIR ’10, pages 355–362, New York, NY, USA,
2010. ACM.


