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ABSTRACT
In this paper, we present our approach to the 2012 Yan-
dex Switching Detection Challenge, which achieved the first
place among all participants. Our approach built on multi-
ple gradient boosting tree models predicting search engine
switching based on more than 400 features derived from user
preferences, search tasks, and user behavior patterns. There
are four key aspects in our method: 1) Rich features are de-
signed not only to cover different switching scenarios such as
user preference (user-based features) and specific search task
(query- and url-based features), but also to learn search fail-
ure from user behavior (session- and action-sequence-based
features); 2) To better capture switching signals, we use
datasets that are disjoint from the training datasets to com-
pute rich aggregate features over (user specific) switch ses-
sions and non-switch sessions; 3) To better deal with the
imbalanced data, we tried both the cost-sensitive technique
and the subsampling technique; 4) To alleviate the over-
fitting problem, we trained multiple models and used the
average score for the final prediction.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval

General Terms
Design, Experimentation

Keywords
search engine switching

1. INTRODUCTION
Search engines such as Google, Bing, Yandex, etc. fa-

cilitate access to the vast amount of information available
on the Word Wide Web. Among many available search en-
gines, users typically prefer to use one or two, performing
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majority of their searches on a primary search engine. De-
cision on which search engine to use as a primary search
provider could be based on many factors including search
quality, locale, satisfaction, usability of search interface and
popularity of a search engine [5]. Sometimes users switch
from one search engine to another during a search task. As
vast majority of search engine switching cases (56%) arise
from user’s dissatisfaction with the search engine [5], infor-
mation on when users switch provides a valuable signal for
search providers to improve user search experience in such
cases. Other switching rationales include need for verifica-
tion or finding additional information, user preference and
unintentional switches due to default settings of the internet
browser. For some search sessions, the fact of switching can
be easily monitored, for instance via a web browser (devel-
oped by a search engine), a browser toolbar or a navigational
query for another search engine. However, in reality only a
fraction of switches can be monitored. The same users might
switch in a way which cannot be monitored by a search en-
gine, e.g. they might use their browser bookmarks to switch
the engines. Detecting the fact of switching, when switch-
ing events cannot be monitored directly is difficult, but it
is important for understanding users’ satisfaction with the
search engine and the complexity of search. Yandex orga-
nized a Switching Detection Challenge1 this year (Oct 23,
2012 - Dec 22, 2012). The task of the challenge was to
predict for each given search session whether it contains a
switching action anywhere in the session.

In this paper, we present our approach to the Yandex
Switching Detection Challenge, which achieves the first place
among the participants. Our approach built on multiple gra-
dient boosting regression tree models for predicting search
engine switching based on more than 400 features which are
derived based on user preferences, search tasks, user behav-
ior patterns, etc. There are four key aspects in our method:

• Rich features are designed not only to cover different
switching causes such as user preference (user-based
features) and specific search task (query- and url-based
features), but also to learn search failure from user be-
havior (session- and action-sequence-based features);
As shown by our experiments, all these different groups
of features are useful to the switching detection task,
and are complementary to each other.

• To better capture switching signals, we use datasets
that are disjoint from the training datasets to com-
pute rich aggregate features over (user specific) switch

1http://switchdetect.yandex.ru/en/



sessions and non-switch sessions. As shown by our
experiments, these statistics (including personalized
statistics) actually contain many of the most impor-
tant features.

• To better deal with the imbalanced data, we tried two
techniques [11]. The first one is to increase the weight
(cost) of positive examples in the training set so that
committing errors for the positive class becomes less
likely as it is associated with higher cost. The second
technique is to subsample negative examples to make a
balanced dataset. As shown by our experiments, both
techniques lead to performance improvements.

• To alleviate the overfitting problem, we trained mul-
tiple models over different time splits and used the
average of scores obtained from each individual model
for the final prediction. As shown by our experiments,
the combined model achieves better performance.

The rest of the paper is organized as follows: Section 2
shortly discusses the related work and Section 3 describes
the task, dataset and evaluation metric of the challenge.
Next, we describe our approach in Section 4 (feature design),
Section 5 (feature importance) and Section 6 (performance
improvement). Finally, Section 7 concludes the paper.

2. RELATED WORK
Understanding and detecting search engine switching has

recently attracted much research attention [10][12][17][5].
Previous work on detecting search engine switching behav-
ior is done mostly in industry using proprietary data. The
2012 Yandex Switching Detection Challenge is the first one
to share a public dataset for this prediction task, which al-
lows academic researchers to experiment with naturalistic
large scale log data. However, in order to avoid privacy
issues the data has to be anonymized prior to its public re-
lease. Thus, only numeric identifiers of queries and URLs are
available and can be used for analysis and deriving features.
As per challenge guidelines we aim at offline prediction of
user switching using complete session information instead
of more difficult online scenario where only partial session
information is available at the time of prediction [17].

The related work is primarily focused on understanding
user behavior prior to switching and predicting searcher’s
success. Heath et al. [10] have analyzed search engine logs
and mined frequent patters of searcher behavior in the search
session represented as a sequence of possible actions. Their
alphabet of actions included query issued (Q), clicked re-
sult link (S), clicked non result link, usage of browser back
button, pagination and search engine switching. They have
also encoded types of page pages user visits - results page or
other page, with associated time duration - short, medium
and long. Laxmant et al. [12] use Hidden Markov Model
(HMM) to analyze searcher behavor and identify frequent
predictive subsequences. Closest to our paper in spirit are
the works of R.White and Q.Guo et al. [17], [5]. As one of
the most popular switching rationale is dissatisfaction with
search engine, another relevant research area is predicting
searcher success. Not exhaustive list of relevant papers in-
clude [7][1][4][8][9].

Predicting query difficulty [3] [2] [6] as part of search suc-
cess is relevant as well, in particular in part of query features
described in later sections.

3. TASK DESCRIPTION

3.1 Task and Dataset
The goal of the challenge is to predict switches that cannot

be monitored in a standard way. Standard ways to monitor
switching actions include detecting navigational queries that
users type in an old search engine to open a new one (e.g.
a user might type a query “google” in Yandex in order to
switch to Google), detecting clicks on the “search with an-
other search engine” links which Yandex has at the bottom
of its SERP (Search Engine Results Page), and detecting
direct search engine switches using Yandex’s browser tool-
bar. Unfortunately a great number of switches cannot be
monitored by the above mentioned means but the knowl-
edge that the users switched search engines in these sessions
might help better understand user satisfaction and the com-
plexity of search; therefore, it is important to identify such
unmonitored switch sessions.

The dataset released by Yandex includes search sessions
extracted from Yandex logs2, with user ids, queries, URL
rankings, clicks and search engine switching actions. To al-
lay privacy concerns the user data is fully anonymized. So,
only meaningless numeric IDs of users, queries, sessions, and
URLs are released. In total, the dataset includes 8,595,731
sessions, 10,139,547 unique queries, 49,029,185 unique URLs,
and 956,536 unique users.

More specifically, two files are given in the dataset: train
and test. Yandex took all users that have done at least one
switch in a period of 27 days and collected all their sessions
in this period as the train file. The test file consisted of
the sessions of these users for the next 3 days with switch
actions removed.

The task of the challenge is to predict for each of the
test sessions how likely the user switched to another search
engine during the search task.

3.2 Quality metric
All submissions are evaluated using the AUC (Area Under

Curve) measure [13]. AUC is a popular measure used for
evaluation of predictors and represents the probability that
a classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one.

If the results of the classifier are presented as a ranked
list based on the beliefs that each instance belongs to the
positive class, then we can use a simple formula (from [13])
to calculate AUC:

AUC =
S0 − n0(n0 + 1)/2

n0n1

where S0 =
∑

ri, ri are the ranks of truly positive examples
in the results list, and n0, n1 are the number of positive
and negative examples respectively. AUC was shown to be a
more consistent and discriminating measure than accuracy.

4. OUR APPROACH
Since the task of the challenge was to predict how likely

each test session contains a switching action we decided to
solve this as a binary classification problem. The idea was
to train a classifier which outputs a confidence that a session

2The logs are about 1.5 years old and do not contain ses-
sions with queries that have commercial intent detected with
Yandex’s proprietary query classifier.



Table 1: Statistics of the evaluation sets created for
our experiment

#Sessions %Pos

Official train file (d1-27) 7,856,734 18.6%
Official test file (d28-30) 738,997 unknown

Split 8 (d1-24 for statistics) 6,769,082 18.2%
Split 8 (d25-27 for validation) 737,421 10.7%

Split 7 (d1-21 for statistics) 5,676,130 18.1%
Split 7 (d22-24 for training) 556,502 10.0%

Split 6 (d1-18,22-24 for stats) 5,985,972 18.3%
Split 6 (d19-21 for training) 542,917 10.4%

... ... ...
Split 0 (d4-24 for statistics) 5,871,491 17.5%
Split 0 (d1-3 for training) 538,506 9.3%

contains a switch and then to rank all sessions by this value
to produce the final list.

4.1 Evaluation set creation
First of all, we needed to set up a reasonable evaluation

environment so as to evaluate the performance of our classi-
fication models. Therefore, we held out the sessions in day
25-27 as our validation set, and used the sessions in day 1-
24 to create training sets as follows. First, we splitted the
sessions into two sets: a statistics set according to a statis-
tics period (e.g., d1-21) and a training set according to a
training period (e.g., d22-24). Then, we removed from the
training set sessions by users who never switched during the
statistics period3. We also applied this filtering step to the
validation set. Therefore, the process of creating our evalua-
tion set is similar to how the official train and test files were
created. Table 1 shows the statistics of the multiple data
splits we created. One can see that they have very similar
distribution as the official train and test files. Based on our
experimental results, the performance of classification mod-
els on this evaluation set is in general consistent with their
performance on the Leaderboard test set.

In the following sections of the paper, unless explicitly
stated the statistics/results are computed using the dataset
of Split 7 in Table 1.

4.2 Feature description
As suggested by the previous research [5] users typically

switch because they are not fully satisfied with the current
search results, they need more relevant results or they as-
sume the other search engine is better for the given task.
Therefore, the probability that user switches to different
search engine during his search session depends on user’s
personal habits and the search task. This means that some
users switch more often than the others and for some tasks
switching is more likely to happen than for the others.

Inspired by the previous effort on search engine switching
prediction [10][12][17][5], we developed a broad set of fea-
tures, which can be splitted into 3 groups: features based
on the current session only, features based on statistics com-
puted from all switch/non-switch sessions in the statistics
period and features based on user-specific switch/non-switch

3We forgot to remove such sessions from the statistics set
by mistake.

sessions in the statistics period. Our intuition was that us-
ing aggregated statistics over all switch/non-switch sessions
on a separate period should help an algorithm to distin-
guish between switch and non-switch sessions on a training
set. In addition, statistics calculated for each user separately
represents some information on personalized user behavior
patterns and may help to train a better model, but on the
other hand this data is very sparse (most of the users in the
dataset have just a few sessions and statistics may not be
that trustworthy).

The final feature set we used for our best submission in-
cludes 414 features. Some of them are very similar, only with
different smoothing, normalization or other variations. Ta-
ble 5 provides a summary of these features (not a complete
list). The Python code generating the features is available
online 4.

4.2.1 Session Features
Session features include features that only depend on the

current session, e.g., session duration (in time units and in
actions), number of unique and abandoned queries (queries
without clicks), average/min/max click dwell time and pause
between actions (pause between issuing a query and the next
action was also considered), average click position, number
of SAT/DSAT clicks, and some more. By SAT (DSAT)
clicks we considered clicks with dwell time more than 500
(less than 200) time units.

4.2.2 (User-Specific) Statistics Features
The rest of the features are calculated using the statistics

dataset. They can be grouped into three subsets. The first
subset of statistics features include all the above session fea-
tures normalized by the corresponding average statistics cal-
culated across each user’s switch/non-switch sessions as well
as across all users’ switch/non-switch sessions. This gives
us 4 features with different normalization. For example,
we calculated the average duration of all switch/non-switch
sessions in the statistics period separately, and included as
two features the session duration divided by the two aver-
age values separately. Another two features were generated
by repeating the same operations for the two average val-
ues calculated for the current user. In addition to that we
also included user’s personalized average statistics as sepa-
rate features which could allow a learning algorithm to learn
more complicated dependencies than just normalization.

The second subset of statistics features include the switch-
ing probability of a user/query/url. Different users have dif-
ferent probability of switching. The same is true for different
search tasks. A user’s switch probability was calculated as
(#user switches + 1)/(#user sessions + 10). To include
search task related switch probability we considered queries
and urls separately. For each query we calculated the num-
ber of times the query was issued before switch in a session.
There are two cases: we can include all queries from the
beginning of the session to the last switch in a session, or
just queries issued immediately before switching. We used
both cases for the feature generation. The same approach
was takes for urls, where only clicked urls were considered.

The third subset of statistics features was computed based
on action sequences, sometimes called search trails. Each
action sequence of a session was encoded in three ways, de-
noted as type-I, type-II and type-III sequences respectively.

4http://mathcs.emory.edu/˜dsavenk/switch detect/



Table 2: Markov model transition probabilities
Non-switch sessions

action q K Q D P S
q 0.169 0.006 0.014 0.272 0.099 0.440
K 0.438 0.038 0.066 0.135 0.064 0.259
Q 0.579 0.038 0.091 0.078 0.032 0.182
D 0.168 0.005 0.019 0.399 0.096 0.313
P 0.327 0.012 0.039 0.228 0.105 0.289
S 0.439 0.016 0.066 0.131 0.064 0.284

Switch sessions
action q K Q D P S

q 0.212 0.016 0.040 0.323 0.115 0.294
K 0.532 0.069 0.129 0.097 0.041 0.132
Q 0.642 0.055 0.157 0.047 0.018 0.081
D 0.162 0.009 0.030 0.412 0.104 0.283
P 0.533 0.069 0.128 0.097 0.041 0.132
S 0.525 0.031 0.129 0.107 0.047 0.161

The type-I sequence alphabet includes queries (Q) and clicks
(C) only. Considering that not all clicks are the same, to
include click dwell time, in type-II sequences we used the
following actions, similarly as those used in [7]: DSAT click
(D), SAT click (S) and other (P), where SAT/DSAT clicks
are defined in the same way as in Section 4.2.1. So, the
alphabet for the type-II sequences is {Q,D,P,S}. The last
type (type-III) of the sequences took into consideration dif-
ferent lengths of pause between issuing a query and the next
action in a session. Using the same thresholds as for short
and long dwell time we assigned different symbols to queries
with small pause (q), long pause (Q) and others (K). The
alphabet for this type of sequences is {q,K,Q,D,P,S}.

For each of the three types of sequences, we generated
the following features based on the statistics dataset: prob-
ability of this sequence appearing in switch/non-switch ses-
sions, probabilities of this sequence under the Markov model
with transition probabilities estimated on switch/non-switch
sessions, and finally statistics based on all n-grams (2,3,4-
grams) of this sequence, namely average ratio of their fre-
quencies in switch and non-switch sessions5. Table 2 pro-
vides the estimated Markov model transition probabilities
for type-III sequences. As we can see in switch sessions
transitions from other actions to S (SAT click) are less likely
while transitions to queries (q, K, Q) are more likely than
in non-switch sessions. Table 3 shows some 3-grams over
type-III sequences ranked by the ratio of their frequencies
in switch and non-switch sessions. We can see that 3-grams
with Q (queries with long pause) tend to occur more fre-
quently in switch sessions, and on the contrary 3-grams with
S (SAT clicks) are indicators of non-switch sessions. An in-
tuitive but nevertheless interesting finding is that 3 queries
with small pause (qqq) has almost the same ratio as 3 DSAT
clicks in a row (DDD) and the ratio is much less than for
queries with long pause (e.g, QQQ).

4.2.3 Hidden-state Condition Random Fields
So far we have focused on feature aggregation at multiple

levels in order to derive good features for the whole session.
However, a more principle way of capturing sequence infor-

5Unfortunately at the time of the challenge we had a bug
in the feature generation script which resulted in incorrect
values for all n-gram features in our submissions.

Table 3: 3-grams ranked by the ratio of frequencies
to appear in switch ans non-switch sessions

3-gram Ratio 3-gram Ratio
QKQ 1.6332 qSS 0.2096
KQQ 1.5983 SSS 0.2107
QQQ 1.5895 SSP 0.2449
QQK 1.5259 SPS 0.2568
KQK 1.4143 SSD 0.2649
KKQ 1.4041 PSS 0.2697
QKK 1.3872 qqS 0.2739
qQQ 1.2804 DqS 0.2786
QQq 1.2591 SDS 0.2809
QqQ 1.2502 KSS 0.2829

... ... ... ...
qqq 0.4384 DDD 0.4194

Table 4: Features used in HCRF model
time pause - time elapsed from previous action
time to action - time elapsed from the start of the session
queries before - number of queries before this action
clicks before - number of clicks before this action
is query - 1 if this action is a query, 0 if it is a click
is repeated query - 1 if this query repeats in the session
query freq - query frequency
query switch prob - switch probability for this query
urls switch prob - switch probability for each result of this
query (10 features)
urls ctr - CTR for each result of this query (10 features)
urls clicked positions - 1 if a result of this query displayed
on a given position receives a click (10 features)
url ctr - CTR for the result receiving this click
url clicked positions - 1 if this click is on the i-th result
(10 features)

mation is to use a sequence model that naturally incorpo-
rates information from the sequences of user action . Among
many existing sequence models we have chosen conditional
random field with latent variables (HCRF [15]) for two rea-
sons: (i) it allows discriminative training and (ii) the hidden
layer of variables conditions the entire sequence on single a
label, i.e. whether user switched or not. Figure 1 shows
an example graphical model of HCRF. The model has three
types of variables: xi represents features for the i-th action,
hi represents the hidden variable for i-th action and y is
the label for the entire sequence. In our implementation ac-
tions correspond to either queries or clicks. We trained the
HCRF model by optimizing the log-likelihood on training
data with respect to model parameters, i.e., weights defin-
ing node potentials, as well as pairwise potentials between
hidden variables and sequence label y (for more details see
[15]). As there is no closed formed solution optimizing the
log-likelihood, the training is performed iteratively with gra-
dient based methods such as LBFGS. Because of this reason
we limited the number of features to 49 to fit the model.
Table 4 summarizes the features used for training HCRF.

4.3 Learning algorithm
For our experiments we tried 2 different implementations

of the gradient boosting tree algorithm: pGBRT6 [16] and

6http://machinelearning.wustl.edu/pmwiki.php/Main/Pgbrt



Table 5: Features used in switch prediction
Features based on current session only
q count - number of queries
c count - number of clicks
time to 1click - time to first click in a session (or large value if no clicks)
q abandoned - number of abandoned queries
dwell - average, max, min clicks dwell times
duration - session duration (in time units and in actions - queries and clicks)
pause - mean, min, max pause between actions in session
unique queries - number of unique queries issued in a session
(d)sat clicks - number of sat/dsat clicks
ave click pos - average click position (11 if no clicks)
time between clicks - average time between clicks
last action - is the last action a query or a click

Features based on all switch/non-switch sessions
all above features normalized by the corresponding average statistics calculated across all switch/non-switch sessions
q switch freq - frequency of a query occuring before switch in a session (max, mean, min over queries in a session)
q ctr - ctr (sat, dsat, last) of a query (max, mean, min over queries)
q ave clickpos - average click position for a query (max, mean, min over queries)
q freq - query frequency (max, mean, min over queries)
clicked url ctr - ctr (sat, dsat, last) of a clicked url (max, mean, min over all clicked urls in a session)
url switch freq - frequency of a clicked url apperaring before switch in a session (max, mean, min over all clicked urls)
markov models - probability of the action sequence by Markov models estimated on switch/non-switch sessions
n-grams - average ratio of frequencies of the sequence n-grams in switch and non-switch sessions
seq prob - probability of this exact action sequence appearing in switch/non-switch sessions
crf - conditional random fields model prediction for the session

Features based on user-specific switch/non-switch sessions
all above features with statistics calculated on this user’s switch/non-switch sessions instead of on all users’ sessions
all average statistics of session features computed over this user’s switch/non-switch sessions
user switch prob - number of user sessions with a switch + 1 divided by the total number of user sessions + 10
user switch prob periods - similar to user switch prob but computed for all the 3-day periods within the statistics period
separately
user last(middle,toolbar,serp) switch prob - number of user sessions with a switch (last/middle in session or of toolbar/serp
type) divided by the total number of user sessions
user session count - number of sessions of this user in the statistics period
ave time to switch - average time to switch for this user

Figure 1: Hidden Variable Conditional Random
Field Model

scikit-learn7 [14]. The first implementation is written in
C++ and uses MPI for parallel computations. By default
RMSE loss function is optimized. The second implemen-
tation is a Python module which has a variety of tuning
parameters, e.g. loss function, subsampling rate (each new
stage uses only a fraction of examples), maximum number
of features to use on each iterations and some more. In our
experiments we used logistic loss function.

7http://scikit-learn.org/

In the experiments we made the scikit-learn implemen-
tation achieved better performance (0.8572 AUC on train-
ing and 0.8440 AUC on validation, compared to 0.8473 and
0.8403 AUC scores correspondingly for pGBRT). Modifying
pGBRT to use logistic loss didn’t improve the score. Un-
fortunately, it takes about 6 hours to train a model with
scikit-learn, compared to 30 minutes with pGBRT, thus we
were unable to use scikit-learn for our final submissions.

5. FEATURE IMPORTANCE

5.1 Individual feature importance
Table 6 presents importance scores for some of the fea-

tures. We chose two scores: information gain and Gini in-
dex based score calculated on the boosting trees ensemble
(denoted as boosting score). Only a couple of features from
each group are presented in the table. The ranks of the
features in the list are computed by the boosting score.

The analysis shows that the most important signals for
switch detection are sequence n-gram statistics, user switch-
ing frequency, average click position. The average click posi-
tion in a session is ranked 3rd by the boosting score but much
worse (123th) by the information gain. This feature can be



an indicator of both difficult search tasks and tasks requiring
more coverage. Sequence features placed at the top of the
ranked list, suggesting that Markov models, whole sequence
frequencies and n-gram statistics are all useful. Comparing
the three types of sequences, we found that features calcu-
lated based on type-III sequences are ranked best, which
means that encoding different dimensions of time informa-
tion (i.e., distinguishing different lengths of pause after a
query and of pause after a click separately) is useful. It was
surprising that url switch statistics (probability that a ses-
sion contains a switch after a click on the given url) are more
important than query switching statistics. The possible ex-
planation is that some urls “suggest” users to try another
search engine.

Only 291 out of 414 features (70%) have non-zero boosting
scores, which means that the learning algorithm didn’t use
the rest of the features (e.g., day of week features, most
of the query and url ctrs). This is not a surprise as our
feature set has a variety of similar features with different
normalization or smoothing.

5.2 Feature group importance
To investigate how features interact with each other, we

divided features into groups and analyzed the prediction per-
formance by each feature group. Two ways of feature group-
ing were considered. The first way included three groups as
shown in Table 5: 1) features based on current session only;
2) features based on all switch/non-switch sessions; and 3)
features based on user-specific switch/non-switch sessions.

A special interest is to see which of the following is the
most important: frequency of switches for users, queries,
urls or sequences. Therefore, we considered another way to
group features into five disjoint sets: 1) features based on
session statistics8 (duration, number of queries, number of
clicks, etc); 2) features based on user statistics9 (user switch
probability and some modification); 3) features based on
query statistics (frequency of switches after a given query,
ctr of queries in a session, etc); 4) features based on url
statistics (frequency of switches after a given url is clicked
in a session, ctr of clicked urls in a session, etc); and 5)
features based on action sequence statistics (Markov model
probability, n-gram statistics, etc).

Based on the above two ways of feature grouping, we con-
ducted a series of feature ablation experiments. Table 7
shows the prediction performance when providing a single
feature group or when providing all feature groups but this
feature group. Among the first set of feature groups, over-
all statistics features alone are more effective than session
features alone, which verifies our intuition that aggregated
statistics on a separate period helps with switch prediction.
Moreover, user-specific statistics features gave even more
signals for predicting switches. This single feature group run
achieved 98.1% of the validation AUC obtained by training
on all features. And removal of this feature group resulted
in a significant drop in prediction quality (from 0.8413 to
0.7782). One reason which makes user-specific statistics fea-
tures so effective could be attributed to how the dataset was
generated: all users from the validation set were present in

8Note that session statistics features here included all the
normalized versions by the corresponding average statistics
computed in the statistics period.
9Note that user statistics features here did not include those
relying on queries, urls, or action sequences in the session.

Table 7: Feature ablation experiments
Single feature group runs

Feature group Training Validation
AUC AUC

Session features 0.7563 0.7491
Overall statistics features 0.7853 0.7777
User-specific statistics features 0.8381 0.8253
Session statistics features 0.8298 0.8183
User statistics features 0.7503 0.7273
Query statistics features 0.6480 0.6352
Url statistics features 0.7488 0.7396
Sequence statistics features 0.8062 0.7952
All features 0.8534 0.8413

Without feature group runs
Feature group Training Validation

AUC AUC
Session features 0.8532 0.8326
Overall statistics features 0.8371 0.8290
User-specific statistics features 0.7882 0.7782
Session statistics features 0.8453 0.8348
User statistics features 0.8490 0.8289
Query statistics features 0.8529 0.8380
Url statistics features 0.8466 0.8273
Sequence statistics features 0.8517 0.8397
All features 0.8534 0.8413

the training set and had at least one switch there.
Among the second set of feature groups, the most effective

ones are session statistics features and sequence features.
Here we also see that url switch statistics features alone
(frequency of switches occurred after a click on a given url)
obtained a little better AUC than user statistics features
alone (e.g. user switching frequency). It would be interest-
ing to see, what urls are “triggering” search engine switching
behavior. Query statistic features alone resulted in signif-
icantly worse performance in predicting switches. On the
other hand, results of runs with a feature group removed
are very close to each other, indicating that signals in each
of the five feature groups could be covered to a certain ex-
tent by other four feature groups. Nevertheless, all the five
groups of features are useful to the switching detection task.
In particular, when sequence features were removed the pre-
diction quality did not drop much, despite the fact that fea-
tures from this group have high importance according to
information gain and boosting Gini index scores in Table 6.
This shows that sequence features contain strong and unique
signals for switch detection, but also many duplicate signals
from session, user, query, and url based statistics features.

6. EXPERIMENTS

6.1 Handling imbalanced datasets
As you can see from Table 1 the training set is imbal-

anced, only 10% of the examples contain switches and the
rest are sessions without switch. One way to take this into
account is to increase the number of positive examples (ses-
sion with switches), we can do this for example by increasing
the weight of the positive examples during training. An-
other approach is to subsample negative examples (sessions
without switches). We were aware that sessions in nega-
tive class are more noisy because they might still contain



Table 6: Feature importance scores (ranks are computed based on the boosting score)
Rank Feature Information Boosting

gain score
1 user typeIII 2gram - average ratio of type-III sequence 2-gram frequencies in user’s switch

and non-switch sessions
0.0350 0.0230

2 user switches count - total number of switches in the user sessions in statistics period 0.0194 0.0222
3 ave click pos - average position of clicks in a session 0.0149 0.0219
4 user switch prob - smoothed frequency of switches in user sessions in statistics period 0.0309 0.0184
11 typeIII 2gram - average ratio of type-III sequence 2-gram frequencies in all switch and

non-switch sessions
0.0290 0.0134

12 time to 1click user normalized - time to the first click in a session normalized by average
time to first click in user non-switch sessions

0.0103 0.0129

14 abandoned to ave abandoned - number of abandoned queries normalized by average num-
ber of abandoned queries in user’s non-switch sessions

0.0229 0.0114

15 unique queries - number of unique queries in a session 0.0204 0.0114
21 ave clickedurl switchprob - average frequency of switches after clicking the given url (score

is averaged over all clicked urls in the session)
0.0100 0.0103

22 min pause user switch - minimum pause in a session normalized by average minimum
pause in user’s switch sessions

0.0016 0.0101

27 ave time to switch - average time before switch in user’s sessions 0.0026 0.0092
30 time 1click - time to first click in a session 0.0078 0.0082
39 crf - conditional random field score for the session 0.0191 0.0070
42 sat clicks - number of sat clicks in a session 0.0046 0.0069
51 user ave query switchprob - average frequency of the user to switch after typing a given

query (the score is averaged over all queries in the session)
0.0013 0.0059

64 session duration - duration of the session in time units 0.0182 0.0050
291 query nonswitchprob - average frequency of a query to be issued in a non-switch session

(score is averaged over all queries in a session)
0.0001 0.0000

switches not detected by standard means. The results for
both approaches are summarized in Table 8. As you can see
both strategies show some performance improvement over
training on the imbalanced dataset. The differences in per-
formances are small, but the results are consistent over dif-
ferent splits and experiments we did. In addition, subsam-
pling resulted in a smaller size of the dataset (e.g. 110981 vs
556502 examples for split 7) and training was faster without
loss of prediction quality. For example, on our server train-
ing of pGBRT on a whole split of dataset lasted about 30
minutes, compared to 3 minutes on a subsampled dataset.

6.2 Multiple models averaging
To reduce variance of the trained models we decided to use

a strategy similar to bagging, but instead of sampling from
the training set we used different time splits of the original
dataset. As shown in Table 1, since only 3-day period was
used for training (and the rest days are used for aggregated
statistics) we could produce all different training sets, train
model on each of them, make predictions for a test session
and obtain the final result by averaging individual scores.
Table 8 summarizes results of this experiment. As you can
see the averaged model outperformed all individual models.

Using this best model computed by averaging multiple
models, we plot the precision and recall curve for the positive
class (switch sessions) in Figure 2. It shows that for this
switch prediction task, high precision (e.g., 0.78) could be
achieved at the cost of recall (e.g., 0.1). Moreover, precision
decreases roughly linearly with the increase of recall.

Table 8: Experiments results (dataset balancing,
model averaging)

Train AUC Validation AUC
No balancing 0.8473 0.8403
Pos weight = 4 0.8534 0.8413
Subsampling 0.8490 0.8412

Split 7 only (21-24) 0.8534 0.8413
best individual model 0.8568 0.8426
worst individual model 0.8546 0.8410
Averaging 8 models - 0.8450

6.3 Our best submission
For our best submission, all 414 features described above

were collected for different splits (Table 1), and we used the
pGBRT implementation of gradient tree boosting with the
RMSE loss function. Parameters were fixed at 400 iterations
with tree depth equal to 5 and learning rate equal to 0.1. We
used a combination of classifiers trained on different periods
as it was shown to give some performance improvement.
The final submission was based on averaging predictions of
models trained on splits 3 (d10-12), 6 (d19-21), 7 (d22-24),
8 (d25-27). Please note, that for the final submission the
validation dataset (d25-27) was used for training as well as
for statistics when training on other splits. For a bunch of
reasons we used a mixed balancing strategy: models trained
on splits 7 and 8 were trained with weight of positive class
set to 4, but models 3 and 6 were trained on subsampled
datasets. As a final score we used the average of predictions
obtained from each individual model.



Figure 2: Precision-Recall curve for the positive
class (switch sessions)

7. CONCLUSIONS
In this paper we presented a machine learning based ap-

proach to web search engine user switching detection. Our
approach utilizes several kinds of personalized and aggre-
gated statistics, collected on a period separate from the
training set. All the features were designed to help learning
different user switching habits and behavior patterns as well
as different reasons for switching (i.e. dissatisfaction and
necessity in better coverage). We demonstrated that per-
sonalized statistics and session feature normalization allow
to improve switching prediction quality significantly. Mod-
eling action sequences is an important source of information
about switching behavior. We showed that n-gram model
features are ranked high by both information gain and Gini
index scores. Incorporating time information into actions
(i.e. queries with short/long pauses before the next action)
has shown to be very useful for switching prediction as well.

Our system scored first among all participants of the Yan-
dex Switching Detection Challenge10.
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