CS375
Competitive Programming, Homework 2

Problem A. Sequence maker - 3pts

Input file: stdin
Output file: stdout

Time limit: 2 seconds
Memory limit: 64 megabytes

You have a sequence of integers aq, as, ..., a,. You can decrease or increase any number by 1. Count the
minimum number of steps (each decrement or increment counts as a step), needed to build an ideal
sequence. Ideal sequence is a sequence, which contains all the numbers from 1 to n (in some order), where
n is the length of this sequence.

Input

Input starts with a single integer t (1 < ¢ < 100) - the number of testcases. Each of the testcases starts
on a new line and contains an integer n (1 < n < 10%), the number of elements in the sequence followed
by n integers —10° < a; < 10°, elements of the sequence.

Output

For each testcase you need to output a single integer - the minimum number of steps to make an ideal
sequence.

Examples
stdin stdout
2 2
230 6
3 -1-12

Page 1 of 77

CS375
Competitive Programming, Homework 2

Problem B. Morse Enumeration - 5pts

Input file: stdin
Output file: stdout

Time limit: 2 seconds
Memory limit: 64 megabytes

Morse code was a very widespread communication format before the use of telephones and computers. In
fact, Morse code is still in widespread use simply because of its simplicity and clarity on noisy signals.
However, one problem can arise with this method of communication: exact meaning. Consider the table
on the next page (retrieved from http://en.wikipedia.org/wiki/Morse code).

Notice that Morse code specifies spacing between letters, and a different spacing between words.If those
spaces were lost, it would be impossible to determine the correct meaning of the message without
examining all possible transmitted messages. For instance, consider the string ".-". The two characters
together could encode the single letter "A"or the string "ET". As strings grow longer, the number
of potential meanings grows as well. For instance, the string ".-..."has 15 possible interpretations:

"AEEE "AEI"AIE "AS "EB "EDE "ENEE "ENI "ETEEE "ETEI "ETIE "ETS "LE "REE and "RI".

You job is, given a message in International Morse Code, determine the number of strings of letters it
could represent.

Input

The input will consist of a number of lines with length no greater than 30 characters. The end of input
will consist of line with a "#"at the beginning.

Output

For each test case, print the number of possible messages that can encoded with the given series of dashes
and dots on a separate line.

Examples
stdin stdout
.- 2
8
= 15
e e i i = - 104099605
#
Note

Page 2 of 77

CS375
Competitive Programming, Homework 2

. The lensth of a dot 1= one vnit.

5. A daszh is thres vnits.

3. The space between parts of the same latter is ons vnit.

4. The space between letters is three vnits.

3. The space between words i3 seven wnits.
A e mm Ue o mm
Emmeooeooe Veeoeomm
Comm o mm o W e mmm mmm
Demmeooe X e ¢ I
E e Y o o HEE EEE
Foommoe rm N NN
G o mmm e
Heooo
lee
Ny N N
K mm o mmm iy N N B
Lommeoe P NN N B
M om ==m R A NN B
N e 4/ 00 00 mm
oN BN N | Se0e00e@
Ponm mme N NN NN
Q mmm - o mmm TS e e e
Reoemme SN I N e e
Seewe O mmm IEE BN Eu e
T mm 0O o S EE -

Page 3 of 77

CS375
Competitive Programming, Homework 2

Problem C. Hotdog Vendors - 2 + 3pts

Input file: stdin
Output file: stdout

Time limit: 15 seconds
Memory limit: 64 megabytes

Last year, several hot dog vendors were lined up along a street, and they had a tricky algorithm to spread
themselves out. Unfortunately, the algorithm was very slow and they are still going. All is not lost though!
The hot dog vendors have a plan: time to try a new algorithm!

The problem is that multiple vendors might be selling too close to each other, and then they will take
each other’s business. The vendors can move along the street at 1 meter/second. To avoid interfering with
each other, they want to stand so that every pair of them is separated by a distance of at least D meters.

Remember that the street is really long, so there is no danger of running out of space to move in either
direction. Given the starting positions of all hot dog vendors, you should find the minimum time they
need before all the vendors are separated (each two vendors are at least D meters apart from each other).

Input

Each point of the street is labeled with a number, positive, negative or zero. A point labeled p is |p| meters
east of the point labeled 0 if p is positive, and |p| meters west of the point labeled 0 if p is negative. We
will use this labeling system to describe the positions of the vendors in the input file.

The first line of the input file contains the number of cases, T. T test cases follow. Each case begins with a
line containing the number of points C that have at least one hot dog vendor in the starting configuration
and an integer D — the minimum distance they want to spread out to. The next C lines each contain a
pair of space-separated integers P, V, indicating that there are V vendors at the point labeled P.

1<T <50

All the values P are integers in the range [~10°,10%]. Within each test case all P values are distinct and
given in an increasing order. The limit on the sum of V values is listed below. All the V values are positive
integers. 1 < D < 10% 1 < C < 200. The sum of all V values does not exceed 108

Output

For each test case, output one line containing "Case x: y where x is the case number (starting from 1) and
y is the minimum amount of time it will take for the vendors to spread out apart on the street. Answers
should be printed with 6 decimal digits.

Examples
stdin stdout

2 Case #1: 1.000000

32 Case #2: 2.500000

01

32

6 1

2 2

03

11

Page 4 of 77

